

The Studio 3T field guide to MongoDB
aggregation

John Lynn

2 The Studio 3T Field Guide to MongoDB Aggregation

Table of Contents

Table of Contents 2

Introduction 5

Aggregation - where it fits 5

Getting Prepared 6

Getting Started with Studio 3T 6

The MongoDB Aggregation Framework 7

The Production Line 7

Stages - The Filtering Factories 7

Stages - The Repurposing Machines 7

Stages - The Summarizing Plants 8

Stages - The Appenders and Blenders 8

Stages - The Distribution Chain 8

Building A Pipeline 9

Starting with $match 10

Under the hood 13

More Stages 15

$project 15

$unwind 17

$group 18

$sort 21

$sortByCount 22

Expressions 25

Literal Expressions 25

Field Path Expressions 25

Expression Operators 26

One more thing: Variables 28

System Variables 28

User Variables 28

1: Filtering Data with $match 29

$match 29

$expr 31

Searching for data in arrays 32

Matching with Regular Expressions 38

2: Repurposing and reshaping data 39

The $project stage 39

3 The Studio 3T Field Guide to MongoDB Aggregation

Including Fields 39

Excluding Fields 41

Adding new fields with $project 41

Calculating order totals 44

Calculating with Array Elements 44

Stepping through the array 45

Getting a Total 47

Converting Normalized Data to Embedded Data 49

Enriching the Comments Collection using $lookup 51

Using Studio 3T to Check References 51

Creating a $lookup stage 53

Using $set instead of $project 59

Regular Expressions and the $regex operators 62

Example: Using $regex operators To Extract Twitter Hashtags 63

Reducing Arrays with $filter 68

$filter and Regular Expressions 70

Creating fields dynamically 70

Using $replaceRoot 73

Using $lookup To Consolidate Customer Information 75

$mergeObjects 79

Adding Documents with $unionWith 79

4: Grouping and Summarizing 80

Working with $group and _id 80

Accumulation in Aggregation 83

Aggregating Everything 85

Accumulators and $group 86

Accumulating Arrays 88

Example: Sales Using Coupons 91

1: $group 91

2: $group 93

3: $replaceRoot 96

4: $unset 98

Example: Using $group to Recombine $unwind-ed Documents 101

Grouping data into $buckets 103

A Simpler Approach to Buckets Using $switch 110

Multiple Aggregations With $facet 111

Custom Accumulator Operators with $accumulator 116

Example: Creating a String Concatenation Custom $Accumulator Operator 117

5: Distributing Data 122

The $out Stage 122

4 The Studio 3T Field Guide to MongoDB Aggregation

The $merge Stage 126

Step 1: Running the pipeline 131

Step 2: Perform some updates. 132

Step 3: Run the pipeline again 137

$merge on the same collection 139

Exporting with Studio 3T 140

Wrapping Up 145

Additional Resources 145

Appendix 145

Setting up an Atlas Free Tier Cluster 145

Loading Sample Data 146

Setting up a local MongoDB instance 146

Loading Sample Data 146

5 The Studio 3T Field Guide to MongoDB Aggregation

Introduction

Aggregation - where it fits

This book explores the MongoDB Aggregation Framework.

The Aggregation Framework has become the centerpiece of MongoDB's data processing since

it was introduced in MongoDB 2.2. Aggregation arrived as an alternative to the Map Reduce

features in MongoDB.

Each subsequent release has seen Aggregation expand in capability and ambition. With

MongoDB 5.0, the Aggregation framework is the main data processing powerhouse within

MongoDB.

We'll look at many of these features as we work through some typical analytic scenarios, using

readily available sample data. Along the way, we'll use examples to show ways that aggregation

pipelines can be used to solve all kinds of problems, with power and simplicity.

6 The Studio 3T Field Guide to MongoDB Aggregation

Getting Prepared

Getting Started with Studio 3T

Throughout this book, we'll be using Studio 3T's MongoDB client.

Along with good examples and realistic sample data, a powerful MongoDB client toolset makes

a huge difference to your learning experience. For this book that toolset is Studio 3T for

MongoDB, from 3T Software Labs.

Studio 3T includes a connection manager, shell, collection viewer with visual query builder and,

most importantly for this book and your learning experience, an Aggregation Editor.

The Aggregation Editor has many features to help in composing, debugging, and testing

aggregation pipelines, and we’ll rely on these features and show how you can use them in this

book. For a complete description of what the Aggregation Editor offers, see Aggregation Editor

at Studio 3T.

Studio 3T has long been a favorite of MongoDB data developers, for its many features and ease

of use. You can get started with Studio 3T for free by downloading and installing it from here.

If you’ve downloaded but not yet installed Studio 3T, or even if you’ve already installed it but

need to familiarize yourself, head over to Getting Started with Studio 3T for tips and advice

published by the engineers at 3T Software Labs.

https://studio3t.com/mongodb-tools/aggregation-editor/
https://studio3t.com/download/
https://studio3t.com/knowledge-base/categories/getting-started-with-studio-3t/

7 The Studio 3T Field Guide to MongoDB Aggregation

The MongoDB Aggregation Framework

What is an aggregation framework? Technically, it's a way to execute multiple processes

against a stream of documents which eventually produces a result stream of documents. But

it’s a lot easier to picture it as a production line instead.

The Production Line

The Aggregation Framework is like assembling your own factory to do your bidding. What you

assemble is a pipeline of stages. A stage is a sub factory, dedicated to particular types of tasks.

What every stage in the pipeline does is process documents.

What goes into the pipeline are documents, retrieved from a collection on disk (or some other

permanent storage).

Now, you may be familiar with these documents. They are JSON (or BSON) documents, formed

of key-value pairs, where values can be strings, arrays or documents objects, all in a semi-

structured format. But these documents typically live on disk.

When they get to the aggregation pipeline, the documents move to live in memory as they are

processed. There, in memory, they can be discarded, modified, or new ones generated in the

pipeline.

So what sorts of stages can these documents go through in their journey down the pipeline?

Stages - The Filtering Factories

Often the first stage in any pipeline is $match. This is a filtering stage. Documents go into the

$match stage and only come out the other side if the contents of the document match the

$match's requirements. This lets you, for example, only select documents referring to particular

cities, or with a large account balance. One document goes in but only the matching documents

come out.

Stages - The Repurposing Machines

The next thing you are likely to see in a pipeline is a $project stage. This is one of the

repurposing stages that let you change documents. $project, for example, takes a list of which

fields in the document to keep or to discard. So you can strip a document down to its bare

essentials. Or create new fields based on existing values. Because the documents are in

memory, you can reshape them to exactly what you need. One document goes in, one

reshaped document comes out.

Or you can repurpose a document into multiple documents for easier digestion. That's what the

$unwind machine does. A single document goes in, multiple reshaped documents come out.

8 The Studio 3T Field Guide to MongoDB Aggregation

Stages - The Summarizing Plants

The $group stage is the powerhouse of the pipeline. It is all about summarizing the documents

that go into it. First it groups them together, according to some characteristic; by state, by user

role, by last name. Then it performs a calculation, or calculations on all the documents in each

group. Finally, it takes those results and turns them into documents with the results from each

group.

This means you can use it to get the average age by last name, the total height by state or any

aggregate value by group. This stage is why it’s called the aggregation framework. It's all about

the aggregates in $group.

Stages - The Appenders and Blenders

Some stages in the pipeline have connections to outside the production line. Take the $lookup

stage. When a document arrives at this stage, the stage goes and looks on disk for another

document or documents which match a field in the document that just arrived. And when it finds

it, it pastes them into the document and sends the newly annotated document onwards down

the pipeline.

$lookup is all about joining disparate documents together. Other stages can mix whole

collections of documents together, through their own pipelines, so they can be processed

together.

Stages - The Distribution Chain

When you get to the end of the pipeline, the resulting documents can be read by applications

and tools like Studio 3T, which can use results to power its Export features. But there are stages

designed to send the data on further. $out, for example, sends results back to the database's

storage to become permanent results. $merge goes further and updates collections of

documents in storage with new values. These stages are all about distributing the resulting

documents to other parts of the database.

9 The Studio 3T Field Guide to MongoDB Aggregation

Building A Pipeline

To demonstrate these concepts, let’s create a simple pipeline, which we’ll build using Studio 3T.

We’ll use the Sample Supply Store Atlas sample database for this example. Imagine you've just

had a call - "We need to know the total number of items for each category of product… sold

through the London store". Where do you begin?

We’ll start by using Studio 3T’s Aggregation Editor to build an aggregation for this challenge.

The Aggregation Editor is an exclusive Studio 3T feature that makes designing, testing, and

debugging MongoDB aggregations easy. The basics of the Aggregation Editor, along with

advanced usage tips and video demonstrations of its use, are available on the Studio 3T

Aggregation Editor website.

In order to get started, first make a connection to your Atlas cluster — follow the steps in the

How to Connect to MongoDB Atlas tutorial if needed. Navigate to the sample_supplies database

and select the sales collection:

That's where our Sales data is. It is records of customer transactions, with a list of everything

they purchased on a particular date at a specific store.

https://docs.atlas.mongodb.com/sample-data/sample-supplies/#sample-supply-store-dataset
https://studio3t.com/mongodb-tools/aggregation-editor/
https://studio3t.com/mongodb-tools/aggregation-editor/
https://studio3t.com/knowledge-base/articles/connect-to-mongodb-atlas/

10 The Studio 3T Field Guide to MongoDB Aggregation

Right-click on the sales collection and select Open Aggregation Editor from the context menu to

begin.

Starting with $match

The first thing we'll want to do is filter out everything that isn't from the London store.

With the Aggregation Editor open, click on the button to add a pipeline stage. The

Aggregation Editor defaults to a $match stage:

In practice, $match is a good stage to use as the first stage of a pipeline, because $match

reduces the number of documents to be processed by the following stages. $match is also able

to use indexes to improve performance but only when it is first in the pipeline.

When used as the first stage in the pipeline, $match is similar to the MongoDB find() method

and its query document. Using $match later in the pipeline has it acting more as a simple filter;

later in the pipeline it is dealing with documents that exist solely in the pipeline - there's no

indexes to boost performance.

For this example, let’s look for sales that occurred in the London store location, by specifying

that we want documents where the storeLocation is equal to London. If you were using

MongoDB's find method you'd write a query something like:

db.getCollection("sales").find(

 {

 "storeLocation" : "London"

 }

);

The $match stage takes a document like the find query, as a search specification:

11 The Studio 3T Field Guide to MongoDB Aggregation

Click the Run arrow icon or press F5 to view the results in the Pipeline output pane in Studio 3T,

normally located just below the Aggregation Editor:

You can also view the documents that are input and output to the $match stage separately.

Select the $match stage in the pipeline editor and select Show Input To This Stage or Show

Output From This Stage from the right-click menu (or simply press F6 or F7).

Or you can select the $match tab or double-click the $match stage in the Pipeline flow pane to

open it. Again, pressing F6 (or selecting for input documents) or F7 (for output documents) will

display the relevant input or output documents.

12 The Studio 3T Field Guide to MongoDB Aggregation

Keep this in mind as you progress through this example. It helps to be able to quickly see what

data is coming into a stage and the effect the stage has on that data.

13 The Studio 3T Field Guide to MongoDB Aggregation

Under the hood

To get a feel for what is going on at a MongoDB query language level, it's useful to be able to

look at what MongoDB is actually processing. Click on the Query Code tab and you'll see what

is being run.

That code is:

db = db.getSiblingDB("sample_supplies");

db.getCollection("sales").aggregate(

 [

 {

 "$match" : {

 "storeLocation" : "London"

 }

 }

],

 {

 "allowDiskUse" : false

 }

);

MongoDB has an aggregate command which can be applied to any collection. The command

takes only two parameters, one is an array which contains the pipeline, the other is a document

with option settings.

The pipeline stages are assembled as JSON objects in an array. Each one just contains a field,

the stage type ($match in this case) and its value is the parameters that configure the stage.

In the case of $match, that's one or more fields to match with and the values each need to have

to be considered a match.

14 The Studio 3T Field Guide to MongoDB Aggregation

The options section turns off the "allowDiskUse" feature of aggregation. When turned on, it lets

the aggregation framework use disk and memory for particularly large operations which might

consume enough memory to impair the database's operation.

15 The Studio 3T Field Guide to MongoDB Aggregation

More Stages

Matching documents is just the start of a functional pipeline. Let's add another stage to our

pipeline. This time, it’s to reduce the number of fields in each document passing through the

pipeline and contributing to our final results.

$project

The less data we have in the pipeline, the better. That's where stages like $project come in,

allowing us to repurpose documents so they only have the data we need and removing the data

we don't need.

It's very similar to the optional projection specification you can add to a find() call. If we only

need the "customer" object, "purchaseMethod" field and "items" array, we would create a find()

statement like:

db.getCollection("sales").find(

 {

 "storeLocation" : "London"

 },

 {

 "customer" : 1,

 "purchaseMethod" : 1,

 "items" : 1

 }

);

To do that in the Aggregation editor, we add a $project stage with the same specification:

 {

 "customer" : 1,

 "purchaseMethod" : 1,

 "items" : 1

 }

Like so:

16 The Studio 3T Field Guide to MongoDB Aggregation

And now the documents in the pipeline are stripped down to our essential fields for processing.

You may notice that fields such as "items" and "customer" are showing their counts of fields or

elements. That's because they are embedded arrays or documents. To reveal their contents,

you can select a column and pick Show Embedded Fields from the right-click menu (or press

Control-Enter to toggle visibility).

You'll also find a Show All Embedded Fields in that right-click menu which saves time. If you

want to see everything, by default, head to Preferences/General and select Show All

Embedded Fields in table view.

If a field is not specifically included in a project stage, it gets dropped. In this case, we dropped

storeLocation in the $project. But we want to set a storeCountry field on the documents

instead.

This is an opportunity to show you $set. This stage type lets you add a field to documents

passing through the Pipeline. Unlike $project, $set doesn't remove fields that aren't

mentioned, it only adds or updates fields in the document.

Our original data didn't have a country associated with the transaction. As we know we are only

dealing with London, we'll add a "storeCountry" field to each document, we can add a stage

as the third stage, and specify that storeCountry will take the literal value "UK".

17 The Studio 3T Field Guide to MongoDB Aggregation

{

 "storeCountry": "UK"

}

And once we've done that we can see all the documents have our new field.

Setting things to literal values isn't that useful, so it's a good job that $set can use expressions

as values. Using expressions, you can compose new data from existing fields.

$unwind

Now to one of the harder to grasp repurposing stages, $unwind. This stage produces multiple

documents of output from one input document. Why? Well, documents may contain arrays and

aggregation isn't good for digging into arrays. So $unwind takes an array in a document and

turns it into a set of near-identical documents, with each one of those documents having ONE of

the values from the array.

If a document has 5 array elements in a field, $unwind turns it into five identical documents, with

the only difference being that the array field now is a single value. Each one of the documents

has one of the array elements as its value.

For $unwind, the stage specification at its simplest, is just the name of the array you want to

unwind with.

In our example, we want to do a calculation with the number and kind of items that have been

sold. So we want to unwind the items array. We add a $unwind stage and give it this

specification:

18 The Studio 3T Field Guide to MongoDB Aggregation

{

 path: "$items"

}

That's it. If you view the $unwind stage in the Aggregation Editor - use the Tree view on the

input and output stages and you'll see something like this:

Here you can see the two array elements on the left hand side now appear in two separate

documents on the right hand side.

$group

Now we have unwound the items, we can wind them back up with $group. This is a

summarizing stage which is packed full of functionality. We'll keep this simple for now and

create a $group stage with this specification:

{

19 The Studio 3T Field Guide to MongoDB Aggregation

 _id: "$items.name",

 totalItems: { $sum: "$items.quantity" }

}

The _id is a value which will be used to group things together. In this case it's the name of the

item which we previously unwound from the array. $group will use that value to create new

documents. When it sees a value it hasn't seen before it'll make a document and start updating

that. When it sees "backpack", a document will be created in memory, something like:

{

 _id: "backpack",

 totalItems: 0

}

And then it will update this document with the incoming document from the previous stage. How

does it update? That's determined by the values and expressions on the right hand side of the

other fields. Here, we have a totalItems field and on the right-hand side:

{ $sum: "$items.quantity" }

The $sum says "add whatever value I have specified to the existing value of the field". The value

here is also from the unwound items array, it's the quantity of this item that was sold. Adding

that to the field means the totalItems field will be the total number of items for each named

product.

The $group stage does this process until it is out of documents to process, at which point it

passes on the documents it has created and been updating.

That all looks like this in practice:

20 The Studio 3T Field Guide to MongoDB Aggregation

 {

 "$match" : {

 "storeLocation" : "London"

 }

 },

 {

 "$project" : {

 "customer" : 1.0,

 "purchaseMethod" : 1.0,

 "items" : 1.0

 }

 },

 {

 "$set" : {

 "storeCountry" : "UK"

 }

 },

 {

 "$unwind" : {

 "path" : "$items"

 }

21 The Studio 3T Field Guide to MongoDB Aggregation

 },

 {

 "$group" : {

 "_id" : "$items.name",

 "totalItems" : {

 "$sum" : "$items.quantity"

 }

 }

 }

Now we have the London store's total sales, by product. This is a basic pipeline that should

show how the stages fit together.

$sort

MongoDB doesn’t store documents in a collection in any particular order. If order of the output

documents is required for an aggregation, the $sort stage is used. $sort takes a document that

specifies the fields to sort by, and for each, the sort order - 1 for ascending or -1 for descending

sort order.

For instance, to sort London store’s highest selling products to lowest, we could add a $sort as

the last stage:

 {

 "$sort" : {

 "totalItems" : -1.0

 }

 }

22 The Studio 3T Field Guide to MongoDB Aggregation

$sortByCount

Since grouping, counting and sorting is such a common thing to do, there’s a stage which does

just that: $sortByCount, which groups documents and then counts the documents in each

group. In our London store’s total sales by product example, the $group stage is used to get a

total quantity of each type of product sold, by using "$sum" : "$items.quantity" in the $group

stage.

If instead we wanted to get a distinct count of products without regard to the quantity ordered,

you could change the $group stage to "$sum" : 1 so that instead of summing the quantity field

for each group, it would produce a count of each product. This is exactly what $sortByCount

does, but using a simpler syntax.

An aggregation using $sortByCount to do this looks a little different than the $group method:

{

 "$match" : {

 "storeLocation" : "London"

 }

},

{

 "$unwind" : "$items"

},

{

 "$project" : {

 "_id" : 0,

 "items" : "$items.name"

23 The Studio 3T Field Guide to MongoDB Aggregation

 }

},

{

 "$sortByCount" : "$items"

}

Here, we $match for stores in London, as before. Then, unwind produces a document per array

element in $items. Then for this example, $project outputs “items” documents consisting of just

the name field of each item:

Then $sortByCount is used to produce the final output:

24 The Studio 3T Field Guide to MongoDB Aggregation

.$sortByCount is a very handy tool to explore data, to get a quick idea of what’s contained in the

documents.

We've kept the stages as simple as possible, but before we move on, we need to introduce

some other Aggregation concepts.

25 The Studio 3T Field Guide to MongoDB Aggregation

Expressions

Each stage has a specification and generally the specification is made up of field names and

expressions.

Literal Expressions

The simplest expression is the literal one. When we used $set, the specification was:

{

 "storeCountry": "UK"

}

The expression is the literal string value "UK".

Field Path Expressions

If you want to refer, within a stage, to the incoming document you can use a field path, your

route to accessing the values of documents. A field path is a string - the field name - preceded

by a single $. And you'll also need to wrap that in quotes.

Practically, consider an incoming document to a stage that looks like this:

{

 "_id" : ObjectId("5bd761dcae323e45a93ccfe8"),

 "saleDate" : ISODate("2015-03-23T21:06:49.506+0000"),

 "items" : [

 {

 "name" : "printer paper",

 "price" : NumberDecimal("40.01"),

 "quantity" : NumberInt(2)

 },

 {

 "name" : "notepad",

 "price" : NumberDecimal("35.29"),

 "quantity" : NumberInt(2)

 }

],

26 The Studio 3T Field Guide to MongoDB Aggregation

 "storeLocation" : "Denver",

 "customer" : {

 "gender" : "M",

 "age" : NumberInt(42),

 "email" : "cauho@witwuta.sv",

 "satisfaction" : NumberInt(4)

 }

}

The saleDate field's value can be referred to as "$saleDate" and the storeLocation field as

"$storeLocation". Dotted notation lets you refer to fields within embedded objects, so

"$customer.email" is the email field within the customer object and "$customer.age" is the

age field. "$customer" will have the value of the whole embedded object. This is called Dot

Notation.

Now, if you are familiar with MongoDB and dot notation, you may assume that you can also

address elements of an array using dot notation. But to save time, in Aggregation you can't do

that except in the $match stage which takes a traditional find query document. Everywhere else,

to address arrays, you'll need to be looking at the Array Expression Operators - in particular

$arrayElemAt.

Expression Operators

Beyond simply selecting fields and their values, the aggregation framework has its own set of

operators which can be used in expressions to perform a wide range of calculations and other

data modifications. Here are some of the major groups of operators that you are likely to use.

Don't worry about taking them all in. We'll be covering a lot of them as we progress through the

rest of this book:

Arithmetic Expression Operators: These operators work with numbers (and some with dates) to

perform calculations. They include $abs, $add, $ceil, $divide, $exp, $floor, $ln, $log, $log10,

$mod, $,multiply, $pow, $round, $sqrt, $subtract, and $trunc. There's also a set of Trigonometry

Expression Operators for working with angles.

Array Expression Operators: We noted you cannot use a field path to reference an array's

elements, but this set of operators allows your aggregation to do much more with arrays. It

includes $arrayElemAt, $arrayToObject, $concatArrays, $filter, $first, $in, $indexOfArray,

$isArray, $last, $map, $objectToArray, $range, $reduce, $reverseArray, $size, $slice, and $zip.

Boolean Expression Operators: These operators evaluate their input as boolean values and

return a boolean result. They include $and, $not, and $or.

https://www.mongodb.com/docs/manual/core/document/#std-label-document-dot-notation
https://www.mongodb.com/docs/manual/core/document/#std-label-document-dot-notation
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#arithmetic-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#trigonometry-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#trigonometry-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#array-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#boolean-expression-operators

27 The Studio 3T Field Guide to MongoDB Aggregation

Comparison Expression Operators: These operators also return a boolean value from the result

of performing different comparisons on their input values. These include $eq, $cmp, $gt, $gta,

$lt, $lte, and $ne.

Conditional Expression Operators: Taking action on the results of comparisons can be handled

by the Conditional Operators. These take the result of any expression and choose which of a

number of options it should go on to evaluate. There's $cond, $ifNull, and the powerful $switch

in this group.

Date Expression Operators: Dates are tricky things to handle which is why Aggregation has a

whole class of operators dedicated to working with them. They include $dateAdd, $dateDiff,

$dateFromParts, $dateFromString, $dateSubtract, $dateToParts, $dateToString, $dateTrunc,

$dayOfMonth, $dayOfWeek, $dayOfYear, $hour, $isoDayOfWeek, $isoWeek, $isoWeekYear,

$millisecond, $minute, $month, $second, $toDate, $week, and $year. Additionally, the $add and

$subtract arithmetic operators can work with dates.

Object Expression Operators: These operators can combine documents or convert documents

into arrays. $mergeObjects and $objectToArray have been joined by a $setField operator in

MongoDB 5.0.

Set Expression Operators: These operators let you treat arrays as sets and then perform logical

operations on them. $allElementsTrue, $anyElementTrue, $setDifference, $setEquals,

$setIntersection, $setIsSubSet, and $setUnion.

String Expression Operators: There are a lot of operators for Strings, to allow for numerous

conversions, searches, replacements and matching functions. $concat, $dateFromString,

$dateToString, $indexOfBytes, $indexOfCP, $ltrim, $regexFind, $regexFindAll, $regexMatch,

$replaceOne, $replaceAll, $rtrim, $split, $strLenBytes, $strLenCP, $strcasecmp, $substr,

$substrBytes, $substrCP, $toLower, $toString, $trim, and $toUpper.

And there are more:

● Aggregation Accumulator Operators are operators that allow calculations over groups of

documents.

● Data Size Expression Operators expose data's physical size.

● Type Expression Operators allow aggregations to convert between MongoDB BSON's

various data types

● Accumulators which are specialized persistent operators for use in stages such as

$group and $bucket, and some non-persistent Accumulators that can be used

elsewhere.

● Window Operators which work over a span of documents in MongoDB 5.0's

$setWindowFields stage

● Custom Aggregation Expression Operators are JavaScript-based extensions to the

MongoDB Query language.

https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#comparison-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#conditional-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#date-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#object-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#set-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#string-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#accumulators---group---bucket---bucketauto---setwindowfields-
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#data-size-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#type-expression-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#accumulators---group---bucket---bucketauto---setwindowfields-
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#accumulators--in-other-stages-
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#window-operators
https://www.mongodb.com/docs/v5.0/meta/aggregation-quick-reference/#custom-aggregation-expression-operators

28 The Studio 3T Field Guide to MongoDB Aggregation

One more thing: Variables

If you see a reference to something with two dollar signs at the start, that's a variable. Variables

aren't specific to any stage or type of stage. There's two kinds of variables, System Variables

and User Variables.

System Variables

System variables return system-defined values. Take $$NOW, it returns the current datetime

value. Why would you need that when you have MongoDB's own date functions you may ask.

Well, $$NOW is defined to be the same throughout all the stages of the pipeline, so if the pipeline

takes a while to run, there won't be any clock creep (time advancing as a long running query

takes place) as it works correctly if $$NOW is used. $$CLUSTER_TIME is the same thing for

replica sets and sharded clusters.

$$ROOT on the other hand refers to the document currently being processed by the pipeline

stage it appears in. $$ROOT exists so you can actually refer to the current document. For

example you may want to copy the current document into its own field as you build up a new

document. Something like:

"myownfield":"$$ROOT"

used in a $set or $project stage, would copy the current document into its own field.

$$ROOT will always point to the current document. $$CURRENT starts any stage pointing at the

current document too, but it can be modified to point at other parts of the current document.

The remainder of the system variables are used to pass control values to $project stages

($$REMOVE) and $redact expressions ($$DESCEND, $$PRUNE, $$KEEP). For now, just know that

they exist.

User Variables

User variables are variables that exist within stages. They can be created with the $let

operator or generated by the $map operator and then used within the scope of that stage and

operator. They also begin with "$$" and use whatever name you give them within the stage.

Typically, to distinguish from system variables, user variables are lower case.

29 The Studio 3T Field Guide to MongoDB Aggregation

1: Filtering Data with $match

$match

The $match stage is simple. It accepts the same query document that find() uses, with the

same powerful set of operators, but in $match’s case, the resulting filtered documents are sent

to the next stage of the aggregation pipeline.

$match is best used early in a pipeline, to limit the work required by the rest of the following

stages. If $match is used as the first stage of a pipeline, it will take advantage of MongoDB

indexes in place on the collection, in the same way as a find() query does.

Although it is called $match, this stage is deeply related to the find() query. $match started life

being able to use the same query operators as the find() query method because, behind the

scenes, the same engine was being used to process the query.

At its simplest $match will test for equality:

{

 name: "Fred"

}

Operators give the opportunity to use more comparisons. So, practically, if we have a field "age"

then we can $match like so:

{

 age: { $gt: 21 }

}

for a greater than comparison. Using $gte gives greater than or equal comparison. Going the

other way:

{

 age: { $lt: 50 }

}

gives us a ‘less than’ comparison. In a similar manner to $gte, $lte gives a less than or equal

comparison.

30 The Studio 3T Field Guide to MongoDB Aggregation

If we wanted to combine these two comparisons, we have $and, $or and $nor operations.

These take an array of expressions which are evaluated and logically combined. The $and

operator returns true if all the expressions given evaluate to true. So, if we wanted both of our

previous conditions to apply we could use:

{

 $and: [{ age: { $gt : 21 } } , { age: { $lt: 50 } }]

}

Logical operators can work with unrelated conditions, but where the same field is being

addressed, the expression can be shortened to:

{

 age: { $gt: 21, $lt: 50 }

}

Multiple conditions for a field requires all of the conditions be met, and so is effectively an $and

operation.

The $or operator works in the same way. That returns true if any of the expressions given

returns true. If you wanted to filter age by anyone under 21 or over 50, you could use:

{

 $or: [{ age:{ $lt : 21 } } , { age: { $gt: 50 } }]

}

Unlike $and though, this cannot be reduced down to a list of expressions.

There is also the $nor which works like the $or operator:

{

 $nor: [{ age:{ $lt : 21 } } , { age: { $gt: 50 } }]

}

except that it is an or operation with a not applied to it. That means none of the expressions

should be true for it to return true.

https://www.mongodb.com/docs/manual/reference/operator/query/and/#mongodb-query-op.-and
https://www.mongodb.com/docs/manual/reference/operator/query/or/#mongodb-query-op.-or
https://www.mongodb.com/docs/manual/reference/operator/query/nor/#mongodb-query-op.-nor

31 The Studio 3T Field Guide to MongoDB Aggregation

$expr

As aggregations became more advanced and gained more and more operators, being based on

the find() method meant $match was left out of the improvements, being unable to use the

aggregation-only operators.

That was up until version 3.6 of MongoDB which introduced the $expr operator, which can be

used by both $match and find().

One simple example of using the $expr operator would be to consider how you'd match find

results with a particular number of elements in an array, such as the items array from our sales

example. There is no find() query method for this but there is an aggregation operator -

$size. $size returns the number of elements in an array, so this:

{ $size: "$items" }

will return the number of elements in our items field. Now, aggregation operators already include

many of the operators we are familiar with from the query languages, like $gt for greater than

comparisons. So we can wrap this with a greater than operator like so:

{ $gt: [{ $size: "$items" }, 5] }

Now this expression is an aggregation expression, so we can't use it in a $match specification,

we have to wrap it in $expr:

{ $expr: { $gt: [{ $size: "$items" }, 5] } }

This allows aggregation expressions to be included in a query document:.

{

 $match: {

 $expr: { $gt: [{ $size: "$items" }, 5] }

 }

}

And that $expr does work with the .find() method too. This is perfectly valid:

db.getCollection("sales").find(

 { $expr: { $gt: [{ $size: "$items" }, 5] } })

32 The Studio 3T Field Guide to MongoDB Aggregation

This lets you tap into aggregation expression operators, even when working outside of

aggregation.

Searching for data in arrays

When the data being searched for is buried in an array within the documents, there are several

options for selecting documents having arrays that contain the desired values being searched

for. The elements of the array being checked may themselves be complex documents

containing many fields, including arrays of documents each containing arrays, and so on.

To illustrate this discussion, we’ll use the sales collection once again. Navigate to the

sample_supplies database and select the sales collection:

Double-click on the sales collection, or right-click and select Open Collection Tab, to view the

data in the sales collection:

33 The Studio 3T Field Guide to MongoDB Aggregation

Let’s take a look at one of the sales documents. Right-click on any document and select

Document / View Document (JSON) to view the selected document:

Examine the items field, which is an array of documents with fields such as name, price,

quantity, and tags - an array within each items document that classifies the item in some way -

“office”, “school”, “stationary”1, “electronics”, and so on.

1 And yes, that is the wrong kind of stationery, but that is what is in the Atlas sample datasets.

34 The Studio 3T Field Guide to MongoDB Aggregation

One way to search for data in arrays is to use a $match stage with an $in Array Expression

Operator. Using $match with $in will pass along documents having the specified values in a

document’s array. For instance, this $match stage will pass documents containing items with

“stationary” values in their tags array:

 $match: { "items.tags" : { "$in" : ["stationary"] } }

The documents that satisfy the $match will have a “stationary” tag in any of its items - as long as

at least one item has the “stationary” tag, the whole document will be passed along unchanged.

When searching for arrays containing multiple target values, the $elemMatch operator is best

for the job. You won’t find $elemMatch in the list of Aggregation Framework Expression

Operators though. $elemMatch is a query operator, used with the find() database command,

and so it’s also available to use with the $match stage in a pipeline.

35 The Studio 3T Field Guide to MongoDB Aggregation

An example of using $match with $elemMatch to find items in the items array that satisfy the

condition of having a name value of “pens”, and a tags element equal to “stationary”:

 $match : {

 "items" : {

 $elemMatch : {

 "tags" : "stationary",

 "name" : "pens"

 }

 }

 }

This $match stage will only pass documents that meet the two conditions.

Another way to search documents having desired array values is the $filter Array Expression

Operator.

The $filter operator works differently than the $match / $in combination, because $filter

will only pass through items array elements that have a tags array element with the desired

value - “stationary” in this example.

Since $match / $in only passes sales documents as long as one of their items has a tags

element of “stationary”, you could end up with fewer documents coming out of the $match / $in

method than what went into $match / $in.

With $filter, the number of documents out will always be the same as the number of

documents in, but the items array will be trimmed to include only elements with tags elements of

“stationary”. You could even end up with sales documents that have an items array of zero

elements.

Method # output = # input? size(items) output =
size(items) input?

$match / $in No Yes

$match / $elemMatch No Yes

$filter Yes No

The $filter operator can be used in conjunction with stages such as $project, $set, and

$addFields to incorporate the results from $filter.

36 The Studio 3T Field Guide to MongoDB Aggregation

The $filter takes three parameters, an input parameter, an as parameter and a cond

parameter. The input parameter defines the array $filter should work on. The as parameter is

then used to create a local variable that represents the value of the “current element” that’s

being worked on. Finally the cond parameter is used to define the expression that’s applied to

each array element in the input array to determine if the array element should be included in the

output array.

$filter looks at each element of the input array, and applies the condition passed in the

boolean expression cond, to determine if the element is a match or not. If it’s a match, then that

element is included in the results, and the next element of the array is checked, and so on for all

of the elements of the array.

Let’s look at an example of using $filter. We’ll create the aggregation on the sales collection

to only include items that have the “stationary” tag in their tags array. This can be done with a

single stage, using $set to redefine the items field.

Checking the input to this $set stage, in the Studio 3T Stage Data pane:

37 The Studio 3T Field Guide to MongoDB Aggregation

And the output. Notice that the items array has fewer elements, but the total document count is

the same (5,000 documents):

We can see that some of the sales documents indeed had no “stationary” items at all, so the

items array has 0 elements.

38 The Studio 3T Field Guide to MongoDB Aggregation

Matching with Regular Expressions

Some challenging search tasks are best accomplished using regular expressions. You can read

more about Regular Expressions in Studio 3T's introduction to them. At their core, regular

expressions define a pattern of characters which has to be met by a target string for that string

to be a match.

The simplest regular expression would be "hello" which would match the letters h, e, l, l and o in

that sequence anywhere in a string. So "I said hello to them" would be a match, but "Hello my

old friend" would not be (that capital H at the start doesn't match the lower-case h in the

pattern). Regular expressions can use "special" characters to make patterns more flexible. If

you surround two characters with square brackets, then either of them can match. So "[Hh]ello"

will match "Hello" or "hello".

Regular expressions are native to MongoDB. By enclosing a string with slashes (rather than

quotes), MongoDB interprets the string as a regular expression. So, if we were doing an

aggregation in sample_mflix's movies collection, then a $match stage of:

{

 plot: /secret society/

}

Would match only plot lines with the string "secret society" somewhere within them. If you

precede a pattern with a ^ it anchors that pattern so it only matches when it occurs at the start

of the string being matched. So if our match is now:

{

 plot: /^The /

}

Then it will match any plot that begins with the word The (and followed by a space).

https://studio3t.com/knowledge-base/articles/regular-expressions-in-studio-3t/

39 The Studio 3T Field Guide to MongoDB Aggregation

2: Repurposing and reshaping data

The Aggregation Framework does a lot more than just aggregate: it has the capability to

reshape documents, rearrange parts of documents, add parts, summarize parts, and more. In

this chapter, we’ll examine ways of reshaping documents with the Aggregation Framework.

Let's start with the supplies collection and start a new aggregation. The first stage will select

some documents where there's more than 5 items in a sale (the $match expression here was

covered earlier):

{

 $expr: {

 $gt: [{ $size: "$items" }, 5]

 }

}

Now let's look at what we can do with the matching documents.

The $project stage

The $project stage is very flexible. It can be used to include particular fields and exclude all

other fields. Vice versa, it can also exclude particular fields and include all other fields.

$project can also be used to rename existing fields, or create completely new fields.

Including Fields

To include particular fields, you specify to $project which parts of the input to pass through to

the next stage. That specification can be either what you want to include, or what you want to

exclude. To specify what you want to include, you give $project the field name and assign it a

value of 1. Any fields referred to like this, and only those fields, are passed through to the next

stage. All other fields are discarded and effectively excluded.

40 The Studio 3T Field Guide to MongoDB Aggregation

For instance, let’s select only the storeLocation and customer fields from the previous $match

example. Add a $project stage to the pipeline and set its specification to:

{

 "storeLocation": 1,

 "customer": 1

}

Like so:

The result of this aggregation will be the matched documents as before, but the $project stage

will pass only the storeLocation and customer fields to the output:

41 The Studio 3T Field Guide to MongoDB Aggregation

All the other fields except for _id are discarded. $project will assume that unless specifically

excluded, the _id field should be included.

Excluding Fields

Sometimes it can be easier to list the fields you don’t want to pass on, in which case you specify

the fields to exclude by indicating them with a 0. Only those fields will be removed, and the rest

are retained:

In this illustration, you can see that the storeLocation and customer fields are there in the Stage

Input to $project, but are removed in the Stage Output. All other fields are retained.

MongoDB will not allow you to both exclude and include fields in a single specification. There is

one exception to this: you can select fields to include but still, specifically, exclude _id.

Adding new fields with $project

One important function that $project is used for, is adding new fields. The documentation

describes it this way: <field>: <expression>

But this seemingly innocuous description is actually saying a lot about what $project provides:

a way to harness the huge set of expression operators to enrich your data with new fields. In

fact, in most cases where new fields are created, they’re being created by using $project.

To demonstrate adding a new field, we’ll build on our previous example where we used $project

to limit the output to just the storeLocation and customer fields and add an additional new field

called productCount, using the $size Array Expression Operator. Here's the whole specification

first:

https://docs.mongodb.com/manual/reference/operator/aggregation/#expression-operators

42 The Studio 3T Field Guide to MongoDB Aggregation

{

 storeLocation: 1,

 customer: 1,

 productCount:{ $size: "$items" }

}

Let's see how this works in practice.

Looking at our new $project stage, we added the new field name, and the expression to use to

create the value:

productCount: { $size : "$items" }

Our new productCount field shows the number of line items in each sale - for instance, a sale

may include some printer paper, some pens, and so on.

But it may also be useful to calculate the total number of items in each sale, by adding up each

item’s quantity field, because a printer paper line item may actually be for 2 packs of printer

paper, for example.

43 The Studio 3T Field Guide to MongoDB Aggregation

This can be accomplished using the $sum operator. The $sum operator can be a simple

operator, or when used in a $group stage is what is known as an accumulator. We are using it

in $project where it takes an array, and calculates the total of all the array elements:

unitCount: { $sum: "$items.quantity" }

"$items.quantity" returns an array made up of the quantity field of each element in the

document’s items array.

Let's go further and suppose that we decided that it would be useful to take the saleDate of

each sale, and create additional date-related fields from it, such as the month and year of the

sale, to provide fields that can be used further on in the pipeline to enable grouping and totalling

on these higher-level date fields.

To accomplish this, we’ll use the $month and $year Date Expression Operators. The relevant

additions to the $project stage are:

 month: { $month: "$saleDate" },

 year: { $year: "$saleDate" }

Now we have created the date fields directly from the saleDate field.

44 The Studio 3T Field Guide to MongoDB Aggregation

Calculating order totals

Suppose that we also need to calculate a total for each sale. So, for each sale document, we

want to multiply the price and quantity to get a line item total, and then add up all the line item

totals.

Calculating with Array Elements

Let's start this section by taking a deeper look at an item from a sale document:

 items : [

 {

 name : "printer paper",

 tags : [

 "office",

 "stationary"

],

 price : 40.01,

 quantity : 2

 }

The line item total for this item would be 40.01 * 2, which is 80.02. The totals for all of the items

for this document in the sales collection (_id: 5bd761dcae323e45a93ccfe8 for this example)

look like this:

45 The Studio 3T Field Guide to MongoDB Aggregation

The order total for this sales document is 849.88. To calculate this using $project, you might

consider trying something like the following, using the $multiply Arithmetic Expression

Operator:

 orderTotal: {$sum: {$multiply: ["$items.quantity", "$items.price"]}}

But this won’t work, because $multiply can only deal with numeric values, not arrays of

numeric values. As we saw earlier, fields like $items.quantity (and $items.price) are

arrays. They do contain the numeric values that we’re interested in having $multiply operate

on though.

In this sale, there are 8 items, so there are 8 elements in the items array. What we need is a

way to multiply the quantity and price that corresponds to each item to get the subtotal per item.

Then we can calculate the total by adding those results together.

Stepping through the array

We need to establish a way to access each one of the array's elements. One way to get at

individual items of an array is the $arrayElemAt Array Expression Operator. This operator

takes an array and an index as parameters, and returns the element from the array at the

specified index. For instance, to do the multiplication of the first elements (at position 0) of the

two arrays:

{

 $multiply: [{ $arrayElemAt: ["$items.quantity" , 0] },

 { $arrayElemAt: ["$items.price" , 0] }]

}

This performs the calculation for the first item (the index is 0 because arrays begin at 0) in the

array of items.

46 The Studio 3T Field Guide to MongoDB Aggregation

But now what we need is a way to do this for all the elements in the items array. Because

different sales have different numbers of items, we need to also work out how many items there

are in the array and how to step through each one of them.

Let's start with that last part first, how to step over the array elements, and introduce the $range

operator. What we will want is an array which lists all the index values. It so happens that

$range takes a starting value and a maximum value and uses them to create an array of

numbers, counting up from the starting value, up to, but not including the maximum value. So if

you have:

$range: [0, 8]

That would evaluate to an array of

[0, 1, 2, 3, 4, 5, 6, 7]

We want to make this array the same size as the number of items in our sale. We can get the

number of items using the $size operator we used earlier. We can use this as the second

parameter for $range:

$range: [0, {$size: "$items"}]

will return an array [0,1,2,3,4] for an $items array that has 5 items in it.

Time to iterate through that array to do the calculations. For this, we'll introduce the $map

operator. With $map, you can step through an input array and apply an expression to each

element in the array. $map returns an array of expression results.

There are only two required parameters to $map. Here’s the $map expression we are going to

use. Let's take it parameter by parameter:

$map : {

 input : { $range : [0, { $size : "$items" }] },

The input parameter takes the array we are going to be working with. In this case, we are

creating that array with $range as we explained previously.

 in : {

https://www.mongodb.com/docs/manual/reference/operator/aggregation/range/
https://www.mongodb.com/docs/manual/reference/operator/aggregation/map/

47 The Studio 3T Field Guide to MongoDB Aggregation

The in parameter takes an expression. This is what will be evaluated for each element in the

input array. In this example, our expression is a multiplication between two array elements.

 $multiply : [

 { $arrayElemAt : ["$items.quantity", "$$this"] },

 { $arrayElemAt : ["$items.price", "$$this"] }

]

 }

 }

We saw this $multiply operation earlier too, but rather than "$$this" we had 0 as the array

index value. Here, we use $$this which is the default name for the current array element that

we are working with.2

Getting a Total

The final part of getting our order total is to add all the values in our array together. We can do

this with $sum, which as we saw calculating totalNumberOfItems, given an array will add up all

the values and return a single total. Our final $project stage now looks like this:

2 If you want to use a more descriptive variable name, set $map's "as" parameter to your preferred

name.

48 The Studio 3T Field Guide to MongoDB Aggregation

{

 storeLocation: 1,

 customer: 1,

 productCount: { $size: "$items" },

 unitCount: { $sum: "$items.quantity" },

 month: { $month: "$saleDate" },

 year: { $year: "$saleDate" },

 orderTotal: {

 $sum: {

 $map: {

 input: { $range: [0, { $size: "$items" }] },

 in: {

 $multiply: [

 { $arrayElemAt: ["$items.quantity","$$this"] },

 { $arrayElemAt: ["$items.price","$$this"] }

]

 }

 }

 }

 }

}

And when we run the whole pipeline, we get our orderTotal.

49 The Studio 3T Field Guide to MongoDB Aggregation

Converting Normalized Data to Embedded Data

MongoDB collections hold documents, which are basically free-form JSON documents that

represent real world things, such as retail orders, medical records, hardware status, and so on.

In the real world, there are relationships between things, for instance - a retail order will have

order line items, a customer placing the order, and others. And these order line items will

consist of things like the products in each line item, the quantity of each, maybe tags depicting

product category, and the like. And further on, the customer placing the order will usually also

have attributes of interest, such as email address, delivery address, along with any number of

attributes that may be important to keep track of.

All of these concepts may be modeled in MongoDB documents. There are two ways to express

the relationships between things: the embedded data model, and the normalized data model.

The embedded data model favors storing all the components of an entity within the same

document; whereas the normalized data model promotes storing components of an entity in

separate specialized collections, and merely storing the id from the foreign collection in the

“parent” entity, similar to the concept of foreign keys in a relational database.

In many cases, MongoDB experts choose the embedded data model, because all the parts of

an entity, and its children, are kept together all in one document. Storage and retrieval

operations of such documents are fast and efficient, because all the data needed is transferred

in a single operation.

Looking first at an example of a normalized model, let's use the comments collection in the

sample_mflix sample database that we installed into our Atlas Free Tier Cluster (or a local

MongoDB instance) in an earlier chapter.

A document in the comments collection contains the email address and name of a person

commenting about a particular movie that they saw. The movie is referred to by movie_id in the

comments collection, which corresponds to a movie in the movies collection. For example:

 {

 "_id" : ObjectId("5a9427648b0beebeb69579e7"),

 "name" : "Mercedes Tyler",

 "email" : "mercedes_tyler@fakegmail.com",

 "movie_id" : ObjectId("573a1390f29313caabcd4323"),

 "text" : "Eius veritatis vero facilis quaerat fuga temporibus.

Praesentium expedita sequi repellat id. Corporis minima enim ex. Provident

fugit nisi dignissimos nulla nam ipsum aliquam.",

 "date" : ISODate("2002-08-18T04:56:07.000+0000")

}

50 The Studio 3T Field Guide to MongoDB Aggregation

This comment document is referencing a movie with the movie_id of

"573a1390f29313caabcd4323", which corresponds to a movie in the movies collection - here’s a

snip of that document from the movies collection (shortened for space):

{

 "_id" : ObjectId("573a1390f29313caabcd4323"),

 "plot" : "A young boy, oppressed by his mother, goes on an outing in

the country with a social welfare group where he dares to dream of a land

where the cares of his ordinary life fade.",

... etc ...

There’s no magic behind the scenes that happens when you store an id to a document in

another collection. If you need to include data from the referenced document, the fetching of

that referenced document needs to be done by your application.

An embedded version of this data would look something like this:

 {

 "_id" : ObjectId("5a9427648b0beebeb69579e7"),

 "name" : "Mercedes Tyler",

 "email" : "mercedes_tyler@fakegmail.com",

 "movie" : {

 "plot" : "A young boy, oppressed by his mother, goes on an

outing in the country with a social welfare group where he dares to dream

of a land where the cares of his ordinary life fade."

 "genres" : [

 "Short",

 "Drama",

 "Fantasy"

],

 "title" : "The Land Beyond the Sunset"

 }

 "text" : "Eius veritatis vero facilis quaerat fuga temporibus.

Praesentium expedita sequi repellat id. Corporis minima enim ex. Provident

fugit nisi dignissimos nulla nam ipsum aliquam.",

 "date" : ISODate("2002-08-18T04:56:07.000+0000")

}

Here each comment would have the full details of the movie embedded in it. In practice, you

would never do that for stored documents, because the duplication would be massive.

You would be far more likely to embed comment documents into the movie document, so that

when you retrieved the movie you could immediately see all the comments. The drawback there

51 The Studio 3T Field Guide to MongoDB Aggregation

though is that MongoDB documents are limited to 16MB in size and that would limit the number

of comments you could embed.

There are various strategies to get around that size limitation, including normalizing documents

like comments into their own collection. The Building with Patterns series on MongoDB's blog

looks at these strategies and other architectural issues.

This is also one of the reasons why MongoDB supports the ability to look up documents in other

collections.

You can however embed any document when you are aggregating documents in the pipeline - a

document in aggregation only exists in RAM so there's no concern around duplication. So for

our next example, let's say we want to report on all the comments, but with each movie title

included in the report.

Enriching the Comments Collection using $lookup

In this section, we’ll explore using the Aggregation Framework instead to do the work of fetching

the referenced document, so that the result is a document with everything embedded. Input to

the pipeline will be documents with fields that reference documents in another collection; output

from the pipeline will be fully populated documents, with the documents from the other collection

now embedded. In this way, the job of fetching referenced documents all happens on the

server, efficiently and elegantly, instead of by the application.

Using Studio 3T to Check References

To start out, we’ll find a comment from the comments collection to use for this example. Using

Studio 3T to open the comments collection in the sample_mflix sample database, we can easily

navigate to an associated movie from the movies collection by using the Follow Reference

command in Studio 3T:

https://www.mongodb.com/blog/post/building-with-patterns-a-summary

52 The Studio 3T Field Guide to MongoDB Aggregation

The Follow Reference command is available when Studio 3T detects that the highlighted

column in Table View is a reference to a document in another collection.

The command brings up a dialog for you to select the collection in which to find the reference:

When the “Go to” button is clicked, the target collection is opened in another tab, with the

referenced document selected:

53 The Studio 3T Field Guide to MongoDB Aggregation

The Follow Reference command is a useful convenience when working with collections that use

normalized data.

Creating a $lookup stage

For the current example, our task is to create an aggregation that will pull the movie information

from the movies collection into the documents from the comments collection. To accomplish

this, we’ll use a $lookup stage to grab movie information from the movies collection and add the

movie document to the comments document that references the movie.

To get started, navigate to the sample_mflix sample database that you created earlier in an

Atlas Free Tier instance, or in your local MongoDB instance. Expand the Collection folder, and

find the comments collection.

Right-click on the comments collection and select Open Aggregation Editor:

54 The Studio 3T Field Guide to MongoDB Aggregation

Now we’re ready to create an aggregation on the comments collection.

Start by clicking on the + button to add a new pipeline stage. The Aggregation Editor defaults to

a $match stage when adding a new stage, which is what we need for this first stage, to limit the

input to $lookup so that we’re working with just one document from the comments collection.

Using $match to limit input to just a single document makes starting out with a new aggregation

pipeline a little easier, allowing you to concentrate on the specific data manipulation task before

running the whole set of documents through - as long as the format of the documents are

similar.

Paste in the id of the one comment document from the comments collection that we looked up

in the previous example -

{

"_id": ObjectId("5a9427648b0beebeb69579e7")

}

One of the best features of the Studio 3T Aggregation Editor is the Stage Data pane, which sits

below the aggregation development tab. The Stage Data pane appears when one of the stage

tabs of the pipeline is selected. The Stage Data pane is divided into two parts: Stage Input and

Stage Output.

Both Stage Input and Stage Output have their own Run button:

55 The Studio 3T Field Guide to MongoDB Aggregation

Pressing the run button in the Stage Input pane will show just the input data for the stage you’re

working on. Pressing the run button in the Stage Output pane will show the results of running

the input data through the stage you’re working on.

The run buttons turn into refresh buttons once they’ve been run. To re-run Stage Input or

Stage Output once they’ve been run, perhaps after tweaking or changing a parameter in the

stage you’re working on, click the refresh button on Stage Output to see the results.

Using Stage Input and Stage Output like this to check results a stage at a time is a very

productive feature of the Aggregation Editor.

To check on the aggregation results on our $match stage, first check the input to the $match

stage by clicking on the button of the Stage Input pane:

56 The Studio 3T Field Guide to MongoDB Aggregation

Check the output from $match by clicking on the button of the Stage Output pane:

After verifying that the $match stage has indeed filtered the input data and produced one

document to work with, add a $lookup stage to the pipeline by clicking on the + and changing

the $match default stage that Aggregation Editor adds, to be a $lookup stage instead:

57 The Studio 3T Field Guide to MongoDB Aggregation

The Aggregation Editor provides a prototype $lookup stage to assist in specifying the

arguments to the stage:

Complete the $lookup stage by providing the appropriate parameters. For this example, the

parameters to specify are:

58 The Studio 3T Field Guide to MongoDB Aggregation

{

 from: "movies",

 localField: "movie_id",

 foreignField: "_id",

 as: "movie"

}

Remember, we’re working on an aggregation on the comments collection. The from field

specifies the collection where the foreign data resides, and localField specifies the name of the

field in the comments collection; whereas foreignField is the name of the field in the from

collection to match with localField. Finally, the as field indicates the name of the new field

created in the comments collection where the movie document will be placed.

The effect is that we’re expanding each document in comments by adding a new field called

movie to the comment document. When $lookup adds the new field (specified by as), it adds it

as an array field, to allow for multiple matching documents to be added. But in our example

here, only one movie from the movies collection is added, but $lookup always adds it as an

array field, just in case multiple documents from the from: collection have matching localField =

foreignField.

Testing this in the Aggregation Editor:

59 The Studio 3T Field Guide to MongoDB Aggregation

Using $set instead of $project

In this screenshot, I selected JSON View in the Stage Output pane, to show the output from the

$lookup stage. Notice the $lookup stage added a movie array to this comment document.

What if, instead of adding the whole matching movies document to our comment document, we

just want to grab a specific field, for instance the movie’s title? This can be accomplished by

using the $set pipeline stage to get the title field from the movie, and then discarding the movie

using $unset.

To understand $set and $unset, it's worth knowing they are effective aliases for two other

commands.

$set is a modern alias for the older $addFields operator, which as its name says, adds a field to

a document. $unset is an alias for $project but where you don't have to say you are excluding a

field.

So

$set: { field: expression }

Is the same as

$addfield: { field: expression }

Similarly

$unset: { field } or $unset: { [field1, field2...] }

are the same as

$project: { field: 0 } or $project: { field1: 0, field2: 0 ...] }

Use $project when you want to completely restructure your document, but if you just want to

add or remove fields, use these two short concise stage operators, $set and $unset, to modify

your document.

We’ll use $set to grab just the essential information from the movie document that we

embedded with $lookup; and then we’ll discard the rest of the movie document using $unset.

60 The Studio 3T Field Guide to MongoDB Aggregation

$set: {

 movie_title: { $first: "$movie.title" }

 }

$set adds a field called movie_title by using the $first pipeline array expression operator to get

the first (and in this case, the only) array element from the movie array which was added by the

$lookup stage, and within that movie, the title field.

$unset: {

 ["movie"]

 }

This is followed by an $unset stage, which discards the whole movie array that $lookup added,

as it is no longer needed. So the resulting document from this aggregation pipeline looks like:

{

 "_id" : ObjectId("5a9427648b0beebeb69579e7"),

 "name" : "Mercedes Tyler",

 "email" : "mercedes_tyler@fakegmail.com",

 "movie_id" : ObjectId("573a1390f29313caabcd4323"),

 "text" : "Eius veritatis vero facilis quaerat fuga temporibus.

Praesentium expedita sequi repellat id. Corporis minima enim ex. Provident

fugit nisi dignissimos nulla nam ipsum aliquam.",

 "date" : ISODate("2002-08-18T04:56:07.000+0000"),

 "movie_title" : "The Land Beyond the Sunset"

}

You can specify additional fields for the $set stage to add; for example, to also add the imdb

document from the movie:

61 The Studio 3T Field Guide to MongoDB Aggregation

$set: {

 movie_title: { $first: "$movie.title" },

 imdb: { $first: "$movie.imdb" }

 }

The resulting document:

{

 "_id" : ObjectId("5a9427648b0beebeb69579e7"),

 "name" : "Mercedes Tyler",

 "email" : "mercedes_tyler@fakegmail.com",

 "movie_id" : ObjectId("573a1390f29313caabcd4323"),

 "text" : "Eius veritatis vero facilis quaerat fuga temporibus.

Praesentium expedita sequi repellat id. Corporis minima enim ex. Provident

fugit nisi dignissimos nulla nam ipsum aliquam.",

 "date" : ISODate("2002-08-18T04:56:07.000+0000"),

 "movie_title" : "The Land Beyond the Sunset",

 "imdb" : {

 "rating" : 7.1,

 "votes" : 448,

 "id" : 488

 }

}

We just saw a way, using an aggregation on the comments collection, to add matching movie

documents from the movies collection, using $lookup based on the localField movie_id field in

the comments collection.

We'll use $set in our next example, but first we want to talk a bit more about regular

expressions.

62 The Studio 3T Field Guide to MongoDB Aggregation

Regular Expressions and the $regex operators

Earlier, we talked about regular expressions and how you can use them to perform precise

matches on strings. The other thing you can do in aggregation with Regular Expressions is use

them to extract text from strings. There are three MongoDB Aggregation operators that make

using Regular Expressions part of a powerful pipeline:

● $regexFind, which finds the first occurrence of a matched string.

● $regexFindAll, which finds all occurrences.

These operators can also be used with stages such as $project, $set, and $addFields to

incorporate the results into the pipeline.

● $regexMatch, which returns a boolean to denote if there were any matches.

This is the simplest version of the $regex operators, it only says whether there was a match or

not. It's ideal to use in $cond expressions where you want to control the flow of processing

based on just matching particular expressions. What $regexMatch doesn't do is extract any data

from the matched string. It's a simple "It's a match" or "It's not a match" as a result.

To get your data extracted from the matching you need the other $regex operators.

$regexFind and $regexFindAll both return a document that contains three fields:

● match,

● idx

● captures.

The difference between $regexFind and $regexFindAll is that $regexFind returns just a single

output document (the first match); whereas $regexFindAll returns an array of output documents,

even if there’s only one match, in which case $regexFindAll returns a one-element array.

The output document that $regexFind and $regexFindAll returns consists of these fields:

1. match is set to the value that the regular expression matched.

2. idx is set to the character position in the input where the match occurred

3. captures is set to an array that contains any captured items from capturing groups that

were specified in the regular expression. If no capturing groups were specified in the

regular expression, then captures is set to an empty array.

The easiest way to make use of the output document returned by $regexFind and $regexFindAll

is to use a $set stage to add the match field. The match field contains the string that was

matched by the regular expression, and $set adds it to the pipeline result.

63 The Studio 3T Field Guide to MongoDB Aggregation

Example: Using $regex operators To Extract Twitter Hashtags

To illustrate the use of regex String Expression Operators, we're going to use a dataset which

isn't contained in the MongoDB Atlas sample datasets. It's a sample dataset of tweets and we

are going to extract the hashtags from the messages using the regular expression operators.

This is one of the datasets in the Studio 3T example dataset collection, available online in the

Github repository at https://github.com/Studio3T/datasets. To quickly download the zip file

archive of datasets, click on this link, and then save and unzip the datasets-main.zip file.

We’ll use Studio 3T’s import functionality to import the tweets dataset from this project. Start

Studio 3T and connect to your database, then select Import from the toolbar. You'll be asked

what format you want to import. Select JSON.

Then click the Configure button to set up your JSON import. The JSON configuration window

will now appear.

Click on Add Source and you'll be asked to select a file. Go to your now unzipped datasets-

main directory, then into the twitter directory where you'll find tweets.json. Select that file and

click Open.

https://github.com/Studio3T/datasets
https://github.com/Studio3T/datasets/archive/refs/heads/main.zip

64 The Studio 3T Field Guide to MongoDB Aggregation

Now we can see the source is going to be imported into a MongoDB database called twitter and

stored in a collection called tweets. Click the Run button in the toolbar and nearly a thousand

tweets will be imported. We're now ready to apply some regular expressions and aggregation to

these tweets.

The body of each tweet in the tweets collection is contained in a field called text. Most of the

tweets contain hashtags. A hashtag is a word or phrase preceded by a hash sign (#), used on

social media websites and applications, especially Twitter, to identify content on a specific topic

- for example #travel. Our task in this exercise is to extract hashtags from the text field, creating

a new array (called hashtags) of one or more hashtags contained in each tweet. For tweets that

contain no hashtags, the hashtags array will be an empty array.

The regular expression to do the job of extracting hashtags is a fairly straightforward one:

#(\w+)

What this regex does is:

1. Match the character “#” literally (because hashtags start with the “#” character)

2. Match the following and capture its match into a group:

a. The “\w” metacharacter matches a single character that is a “word character”

(ASCII letter, digit, or underscore only)

b. This match (with a word character) can occur between one and unlimited times,

as many times as possible - and it will try and consume as many word characters

as possible in the process - as indicated by the “+”

The capture referred to here is about extracting whatever text matched the regular expression

within the parentheses. Enclosed within the parentheses is the capture group and is extracted

as part of the matching process. While the regular expression looks for a # followed by word

characters, the capture group will capture only the word characters because the # is outside the

parentheses.

This simple regex will find and extract hashtags from our tweets. Since tweets may have

multiple hashtags in each, we’ll use the $regexFindAll String Expression Operator, which finds

65 The Studio 3T Field Guide to MongoDB Aggregation

all occurrences, instead of $regexFind, which would only get the first one. We'll create a $set

stage which does that:

{

 hashtags: { $regexFindAll: { input: "$text", regex: "#(\w+)" }}

}

As we mentioned earlier, the output for each match will consist of 3 fields: match, idx, and

captures. So given a tweet with the following text:

RT @webinara: RT: http://t.co/tgxDJSOrHb #webinar #TrueTwit #TechTip.

A Node.js API development webinar:

https://t.co/nBjkk4MnuN

Our pipeline stage would return a structure like this:

 "hashtags" : [

 {

 "match" : "#webinar",

 "idx" : NumberInt(41),

 "captures" : [

 "webinar"

]

 },

 {

 "match" : "#TrueTwit",

 "idx" : NumberInt(50),

 "captures" : [

 "TrueTwit"

]

 },

 {

 "match" : "#TechTip",

 "idx" : NumberInt(60),

 "captures" : [

 "TechTip"

]

 }

]

66 The Studio 3T Field Guide to MongoDB Aggregation

Note that, since we defined a single capture group in the regular expression, the captures array

will always be an array of size 1, containing the hashtag value, without its leading “#”.

For this example, we want to end up with just a simple array of hashtags for the tweet, like this:

 hashtags : ["webinar","TrueTwit","TechTip"]

In order to accomplish this, we’ll create another $set stage that uses the $reduce Array

Expression Operator, along with the $concatArray Array Expression Operator, to create a new

array that has just the captures items - the text of each hashtag.

{

 hashtags : {

 $reduce : {

 input : "$hashtags.captures",

 initialValue : [],

 in : {

 $concatArrays : [

 "$$value",

 "$$this"

]

 }

 }

 }

}

And since we’re using another $set to accomplish this, why not reuse the “hashtags” field. As

the MongoDB $set documentation states “If the name of the new field is the same as an existing

field name, $set overwrites the existing value of that field with the value of the specified

expression”.

What this $set stage does, is reduce our regular expression results to our desired minimal

array. It does this using $reduce.

First, a quick introduction to $reduce. The $reduce operator steps through an array (input) and

for each element in the array ($$this), it evaluates an expression (in). It holds the result of that

expression in a variable ($$value). This variable is given a starting value (initialValue).

In our example, the input is the $hashtags.captures array. We start with an empty results array.

For each element in the $hashtags.captures array, we use $concatArrays (concatenate

arrays) to append the element value to the results array.

https://docs.mongodb.com/manual/reference/operator/aggregation/set/#-set--aggregation-

67 The Studio 3T Field Guide to MongoDB Aggregation

That results array is then used as the value for the hashtags field.

If we look at our second stage in the Aggregation Editor we can compare the incoming

document's hashtags field in Stage Input with the reduced hashtags array in Stage Output:

We captured the set of hashtags from the tweet text using $regexFindAll, and then reduced

the output from the $regexFindAll captures field to just a simple array of hashtags.

68 The Studio 3T Field Guide to MongoDB Aggregation

Reducing Arrays with $filter

As we are reshaping and creating a new array, let's look again at $filter, a useful function for

trimming down those arrays. Recall that it is an expression operator which will step through the

elements of an array and test them against a condition. If the condition returns true, that

element is added to the array that $filter returns.

So if a document has a field, with an array as a value of [10, 20, 30, 40] and you only want the

array to contain the "high" scores (over 25), you can create a $set stage like this:

{

 scores : {

 $filter : {

 input : "$scores",

 as : "score",

 cond : { $gt : ["$$score", 25] }

 }

 }

}

$filter takes at least two parameters. The input parameter is the array we want to filter. Here.

it's the value of the scores field in the incoming document. The as parameter is optional. It gives

a variable name to be used to refer to each enumerated element. We use this variable name in

the condition. In our example, we'll call it this variable score. If you don't specify it, you would

have to refer to $$this.

The third parameter is the most important. The cond parameter sets the condition we want to

test each array element against. It needs to evaluate to true (the array element will be included

in the results) or false (it'll be filtered out and discarded). For our example, we are using a $gt

operator and comparing the score variable with the value 25. Remember score is a user

variable and as such is referred to as "$$score".

69 The Studio 3T Field Guide to MongoDB Aggregation

70 The Studio 3T Field Guide to MongoDB Aggregation

$filter and Regular Expressions

How could we apply $filter to our previous Tweet hashtag extraction pipeline? Let's say we're

being asked to only list hashtags which start with an uppercase letter. We can create a $set

stage which will $filter the hashtags. But how do we detect the presence of an upper case letter

at the start of any of the tags? With a regular expression, and using the $regexMatch operator

which we've not yet used. If you recall, it just returns true or false if there is a match to the

regular expression in its input, and that makes it ideal to go into the cond parameter for a final

$set stage:

$set: {

 "hashtags" : {

 $filter : {

 input : "$hashtags",

 as : "tag",

 cond : {

 $regexMatch : {

 input : "$$tag",

 regex : "^[A-Z]"

 }

 }

 }

 }

}

This technique also changes the size of the array, so you could follow up by filtering out all the

tweets with no tags after being filtered. You can achieve that with a

$match: {

 $expr: { $gt: [{ $size: "$hashtags" }, 0] }

}

Creating fields dynamically

You can dynamically reshape your data using arrays, with the $arrayToObject operator. This

can prove useful when you are trying to map values to a sparsely populated schema, or need to

use particular field names conditionally. Here's an example of $arrayToObject in use:

$project: {

71 The Studio 3T Field Guide to MongoDB Aggregation

 myObject : {

 $arrayToObject : {

 $literal : [

 ["name", "Bill"],

 ["age", 30]

]

 }

 }

}

Let's take a moment to take in the $literal operator in there. When Aggregation is reading these

stages, it tries to interpret everything as an expression to be evaluated. That's good and simple

logic, until you want to give it an actual value which may or may not be parsable as an

expression. It is then that the aggregation framework typically trips up parsing it and the

aggregation can't run. Enter $literal which simply says "Take my value literally" and it stops all

the parsing attempts.

Here, we are literally defining an array to be used as a value - we'll have an example later on

which shows how you could create an array like this, but for now, we'll use a literal array. Now

when $arrayToObject sees an array of arrays like this, it works through each array element

using the first value as the name of a field and the second as its value.

In this example, any document passing through this project stage comes out with a "myObject"

embedded document, containing a field called name, set to "Bill" and a field called age, set to

30.

But you may not be able to arrange your data in neat arrays with keys and values.

$arrayToObject has you covered there too. It also accepts an array of objects with a field name/

key as the value of a field named "k" and the value in a field named "v". Doing our preceding

example with this option would look like this:

https://www.mongodb.com/docs/manual/reference/operator/aggregation/literal/

72 The Studio 3T Field Guide to MongoDB Aggregation

$project: {

 myObject : {

 $arrayToObject : {

 $literal : [

 { "k": "name" , "v": "Bill" },

 { "k": "age", "v": 30 }

]

 }

 }

}

And this produces identical output to the preceding example. The different format of input arrays

does, though, give you a lot more flexibility when working in an aggregation pipeline.

Another way to create fields dynamically is to merge in some already existing objects, and for

that we have $mergeObjects. This takes an array of objects and merges them together to

make one large object including all the names and values from the different objects.

Let's recreate our name and age object with $mergeObjects.

$project: {

 myObject : {

 $mergeObjects : [

 { name : "Bill" },

 { age : 30 }

]

 }

}

This again returns the same results as before. This time, it's using the actual objects and

blending them. This is useful when you want to turn two separate documents into one. Where

73 The Studio 3T Field Guide to MongoDB Aggregation

the same key exists in the source objects, the result will see the value of the clashing field

overwritten with the value in the last merged object.

We will explore $mergeObjects in more detail when we start looking at accumulators and

$group.

Using $replaceRoot

The $replaceRoot stage is used to totally replace the documents in an aggregation with new

documents. These new documents can consist of all new fields, or fields from the existing

documents, or a combination of new and existing fields. The argument to $replaceRoot can be

any valid expression that resolves to a document.

For example, using our Twitter exercise from earlier, suppose we wanted to output documents

that consist of just the _id field and the set of hashtags:

To accomplish this, all that’s needed is the addition of a $replaceRoot stage to the end of the

previous Twitter aggregation:

"$replaceRoot" : {

 "newRoot" : {

 "_id" : "$_id",

 "hashtags" : "$hashtags"

 }

}

The $replaceRoot newRoot parameter requires a document, which is used to specify the

shape and contents of the new documents which are output from $replaceRoot

74 The Studio 3T Field Guide to MongoDB Aggregation

75 The Studio 3T Field Guide to MongoDB Aggregation

Using $lookup To Consolidate Customer Information

To demonstrate another practical application of $lookup, we’re going to use a different sample

database; the sample_analytics database that you created earlier.

The sample_analytics database tracks the customers of a financial services firm and their

accounts and transactions. In this database, a customer has 1 (or many) accounts, and this is

depicted in the customers collection as an array of account numbers in the accounts array. The

actual information for each of these accounts, however, is in a separate collection called

accounts. Additionally, transactions for each account are stored in yet another collection, called

transactions. Conceptually, the collections in the sample_analytics database look like this:

In this example, we’ll use multiple $lookup stages to bring all account information and

transactions together under each customer, like this:

The aggregation that we create will be on the customers collection, with $lookup stages to grab

the related data from the accounts and transactions collections.

When starting work on a problem like this, I like to start the pipeline with a temporary $match

stage to select just two documents from the source collection, to help focus on the reshaping

needed, without worrying about the volume of data coming through:

https://docs.atlas.mongodb.com/sample-data/sample-analytics/#sample-analytics-dataset

76 The Studio 3T Field Guide to MongoDB Aggregation

In plain text:

 {

 "_id": {"$in": [ObjectId("5ca4bbcea2dd94ee58162a78"), ObjectId("5ca4bbcea2dd94ee58162a6e")]}

}

Looking at one of the customers documents (using the Tree View option in the Stage Output

window of the Stage Data pane in Studio 3T), notice the accounts array:

The first step (after the temporary $match stage) will be a $unwind stage, to unwind the

accounts array. $unwind will create a new document for each element of the accounts array, so

for this example, the output of the $unwind will actually be 3 documents for this customer

(5ca4bbcea2dd94ee58162a6e), because there are 3 accounts in the accounts array, as seen

here in the Stage Data pane showing the input and output of the $unwind stage:

77 The Studio 3T Field Guide to MongoDB Aggregation

Now that we have a document per customer account, a $lookup stage to the accounts collection

is used to bring in the account information for each account, into a new field account_data:

Similarly, another $lookup stage, this time to the transactions collection, is used to bring in

transaction information for each account.

78 The Studio 3T Field Guide to MongoDB Aggregation

Now we have the account data and transactions situated under each customer - one for each

account (and their transactions).

The stages:

{

 "$unwind" : {

 "path" : "$accounts"

 }

},

{

 "$lookup" : {

 "from" : "accounts",

 "localField" : "accounts",

 "foreignField" : "account_id",

 "as" : "account_data"

 }

},

{

 "$lookup" : {

 "from" : "transactions",

 "localField" : "accounts",

 "foreignField" : "account_id",

 "as" : "transactions"

 }

}

79 The Studio 3T Field Guide to MongoDB Aggregation

While it’s true that we now have duplicated customer documents, in an upcoming section we’ll

revisit this exercise to add a $group stage to this pipeline to group by customer so that we once

again have a single document per customer.

The $lookup stage is one way to enrich documents with additional data from other collections.

The ability to shape and reshape documents on the fly, in order to meet the needs of different

parts of an application or service is quite powerful, especially considering that the data is based

on the same source MongoDB collection, while serving multiple needs.

Next we’ll explore additional ways to add data, such as using the $mergeObjects pipeline

operator to combine document parts, and $unionWith, another way to add data from other

collections.

$mergeObjects

$mergeObjects, an Object Expression Operator, combines documents or parts of documents

together into one document. $mergeObjects can be utilized by several of the aggregation

pipeline stages.

$mergeObjects can be specified in place of a document, for any expression that’s expecting a

document. For instance, $mergeObjects can be used in a $project (and $set) stage, as well as

in $replaceRoot, $replaceWith, and even in a $group stage, where $mergeObjects plays the

role of an accumulator in the $group stage. (We’ll be delving into $group and accumulators in

the Grouping and Summarizing section later on.)

Adding Documents with $unionWith

Like $lookup, the $unionWith pipeline stage also combines data, but instead of combining fields

from different documents, $unionWith brings in documents from another collection - either whole

documents from another collection, or selected parts of documents. The difference here is that

$unionWith doesn’t do any matching or joining to determine related documents like $lookup

does. $unionWith just adds documents from another collection.

80 The Studio 3T Field Guide to MongoDB Aggregation

4: Grouping and Summarizing

So far, we've looked at filtering data and restructuring documents using the Aggregation

Framework. We can extract documents and remodel their data to make it suit our needs. But

this is only the start for the story of the Aggregation Framework.

The Aggregation Framework was created by MongoDB to take on the task of grouping data and

performing calculations on the groups.

These calculations would produce aggregate results, results created from bringing together

different elements into one. And that is why it is called the Aggregation Framework.

At the center of the process of aggregation is sorting the data into groups. Each group will have

its own aggregate result, and at the end of the process, create a document that contains that

result.

The stage that handles this process is $group and the first thing that a $group stage needs is to

define an _id for the group.

The _id field in a collection is a unique identifier associated with each document. With $group,

the _id field is a unique identifier for each group. Let's go to the movies and see how we can

round them up with $group.

We'll be using the samples_mflix database and movies collection for this next part. You will

need to select it and open the aggregation editor.

Working with $group and _id

As you have a collection of movies and want to group them by the type of movie they are, you

can tell $group that the _id is based on the type field, like so:

Or as you'd write in the shell:

81 The Studio 3T Field Guide to MongoDB Aggregation

db.movies.aggregate([

 {

 $group: { _id: "$type" }

 }]);

Run that and this would be the result:

Or in plain text:

{

 "_id" : "movie"

}

{

 "_id" : "series"

}

What has actually happened behind the scenes, is that the aggregation framework has first

stripped the documents down to just the type field. Then it has gone through each document

looking for different types. If there's a different type it creates a new holder for that value and

moves on. By the time it gets to the end of all the documents, it has a set of holders with each

different value in it. And that's how we get the two documents with "movie" and "series" at the

end.

The _id field doesn't have to be a single value. It can be an embedded document itself, with its

own fields and values. Let's take our movie type field and embed it as a "cinemaType" field.

 Or as a shell command:

82 The Studio 3T Field Guide to MongoDB Aggregation

db.movies.aggregate([

 {

 $group: { _id: { cinematype: "$type" }

 }]);

It's essentially the same output, just with the _id now able to encapsulate multiple fields.

{

 "_id" : {

 "cinemaType" : "series"

 }

}

{

 "_id" : {

 "cinemaType" : "movie"

 }

}

This is the key to grouping on more than simple field values. If we, for example, added the rated

field to the _id like so:

We get 33 documents back, starting with:

{

 "_id" : {

 "cinematype" : "series",

 "rated" : "UNRATED"

 }

}

{

83 The Studio 3T Field Guide to MongoDB Aggregation

 "_id" : {

 "cinematype" : "movie",

 "rated" : "PG-13"

 }

}

{

 "_id" : {

 "cinematype" : "movie",

 "rated" : "TV-MA"

 }

}

...

Each document covers the combinations of cinematype and rating.

Accumulation in Aggregation

As the aggregation framework's group command works through every document presented to it,

it can perform calculations with values from each document. To carry the results of previous

calculations forward, operators called accumulators are used. They accumulate their past

results. The most basic of these accumulators is $sum. This takes a value as a parameter and

adds it to the accumulated result so far. $sum is how you can total up fields in each group. Let's

apply that now.

As a shell command:

db.getCollection("movies").aggregate(

 [

84 The Studio 3T Field Guide to MongoDB Aggregation

 {

 "$group" : {

 "_id" : {

 cinematype : "$type"

 },

 "totalComments" : {

 $sum : "$num_mflix_comments"

 }

 }

 }

]

);

Gives us the output:

{

 "_id" : {

 "cinematype" : "movie"

 },

 "totalComments" : 40966

}

{

 "_id" : {

 "cinematype" : "series"

 },

 "totalComments" : 113

}

And if we change the _id to include ratings:

85 The Studio 3T Field Guide to MongoDB Aggregation

$group : {

 "_id" : {

 cinematype : "$type",

 rated: "$rated"

 },

 "totalComments" : {

 "$sum" : "$num_mflix_comments"

 }

 }

}

A sample of the output for this $group would be:

{

 "_id" : {

 "cinematype" : "movie"

 },

 "totalComments" : 3999.0

}

{

 "_id" : {

 "cinematype" : "movie",

 "rated" : "GP"

 },

 "totalComments" : 14.0

}

{

 "_id" : {

 "cinematype" : "series",

 "rated" : "TV-14"

 },

 "totalComments" : 8.0

}

Aggregating Everything

As you can see from the examples, we can divide up the data, using ever more precise _id

specifications, to focus on particular aggregate results. But what if we want to perform an

aggregate calculation on every document? The answer is in the _id field. Remember we set it to

a variable value from the incoming document. However, we can easily set it to a constant value.

Once we've done that, the $group command only has one _id group to calculate for:

86 The Studio 3T Field Guide to MongoDB Aggregation

Or in plain text:

$group: {

 _id: "totals",

 totalComments: { $sum: "$num_mflix_comments" },

 totalMovies: { $sum: 1 }

}

Gives us this result:

That's 41079 comments on 23530.0 movies. Notice how we also use a literal value, 1, in the

$sum for totalMovies. This is a simple way to count the number of documents passing through

each group in a $group stage.

Why the different number formats? Because $sum inherits its number type from the field

or literal it's given. The count of comments is an Int32, so the resulting value is an Int32.

The literal 1 translates to MongoDB's default number type, a floating point value, hence

the .0 at the end. If you want to count in integer values, use { $sum: Int32(1) }.

Accumulators and $group

87 The Studio 3T Field Guide to MongoDB Aggregation

The $sum accumulator is one of the most commonly used accumulator operations available to

the $group stage. It works with numeric values and maintains a total. Other numeric

accumulators include $avg, which calculates the average of all the values it is fed. For example,

if we want the average runtime of all the movies in the database, we could do:

$group: {

 _id: "average_all",

 avgRuntime: { $avg: "$runtime" }

}

Another purely numeric accumulator is $count. It's equivalent to "$sum: 1" but can be regarded

as more explicit when counting values. Our totals example earlier could use $count like so:

$group: {

 _id: "totals",

 totalComments: { $sum: "$num_mflix_comments" },

 totalMovies: { $count: {} }

}

Other accumulators can work with different types of data. For example, $min and $max can be

used with numeric values like this:

88 The Studio 3T Field Guide to MongoDB Aggregation

$group: {

 _id: "minmaxcomments",

 leastComments: { $min: "$num_mflix_comments" },

 mostComments: { $max: "$num_mflix_comments" }

}

Which gives us:

{

 "_id" : "minmaxcomments",

 "leastComments" : 0,

 "mostComments" : 161

}

But $min and $max also work with date types, so you can get the earliest or latest date in a

group. And they work with strings, though the times you'd want the lexicographically earliest and

last string values are probably quite small.

Accumulating Arrays

The array accumulators also work with any type of data. $push and $addToSet both create

arrays as their result. $push appends its given value to the end of its array, so if we want an

array of all the titles in our movie database, we can do this:

$group: {

 _id: "alltitles",

 titles: { $push: "$title" }

}

Which results in:

89 The Studio 3T Field Guide to MongoDB Aggregation

{

 "_id" : "alltitles",

 "titles" : [

 "Gertie the Dinosaur",

 "Winsor McCay, the Famous Cartoonist of the N.Y. Herald and His

Moving Comics",

 "The Birth of a Nation",

 "Intolerance: Love's Struggle Throughout the Ages",

 "Wild and Woolly",

...

and 23500+ other titles in that array.

$addToSet is more selective about what it adds to the array. As the name implies, it treats the

array as a set, a set of unique elements. So when you $addToSet, only values which are not

already in the set are added.

$group:{

 _id: "distinctratings",

 ratings: { $addToSet: "$rated" }

}

And that results in:

{

 "_id" : "distinctratings",

 "ratings" : [

 "NC-17",

 "TV-14",

90 The Studio 3T Field Guide to MongoDB Aggregation

 "PG",

 "OPEN",

 "UNRATED",

 "TV-PG",

 "PASSED",

 "TV-Y7",

 "TV-G",

 "APPROVED",

 "TV-MA",

 "AO",

 "X",

 "Approved",

 "M",

 "NOT RATED",

 "G",

 "GP",

 "PG-13",

 "R",

 "Not Rated"

]

}

If you are familiar with SQL, you may recognize this as the behavior of the DISTINCT keyword.

$addToSet helps filter down aggregated fields into a set of unique values.

91 The Studio 3T Field Guide to MongoDB Aggregation

Example: Sales Using Coupons

Let's look at a common task for aggregation: taming a set of data into some actionable insights.

In this next example, we'll use our trusty sales collection again, from the Sample Supply Store

Atlas sample database.

Our mission is to reshape and summarize the data so we can answer a particular business

question: “How often are our coupons getting used at our various store locations?”.

If we can determine how effective coupon placement and advertising are, we can make

adjustments to coupon strategy in the store locations that show low coupon usage.

Let's navigate to the sample_supplies database and select the sales collection. Recall that the

sales collection contains sales of supplies:

1: $group

The task is to determine coupon usage for each sales location. The desired output for this

example is documents with location and a breakdown of sales where coupons were used or not

used, like this:

etc…

https://docs.atlas.mongodb.com/sample-data/sample-supplies/#sample-supply-store-dataset

92 The Studio 3T Field Guide to MongoDB Aggregation

To perform this task, we could simply $group by storeLocation and couponUsed, and use a

count of 1 for each of these groups:

$group: {

 _id : {

 storeLocation : "$storeLocation",

 couponUsed : "$couponUsed"

 },

 count : {

 $sum : 1

 }

}

Output of this:

93 The Studio 3T Field Guide to MongoDB Aggregation

This is ok, but it’s not the output we want. What we want is one document for each location, with

2 fields - “CouponUsed” and “CouponNotUsed”.

2: $group

To accomplish this, we’ll start off the pipeline with this first $group stage, and then follow it with

another $group stage that will do two things:

1. Move couponUsed field out of the _id, leaving just storeLocation as the _id field.

2. Create a two-element array called counts. This will be an array of objects with each

object having 2 fields; one named “k” (for key), and one named “v” (for value). The k field

will have a value of either CouponUsed or CouponNotUsed. The v field will have the

numeric value that is the count of the items with couponUsed set to true/false – we’ll

convert the boolean true values to the string CouponUsed, and the bool false values to

the string CouponNotUsed.

Here is the 2: $group stage that does that:

94 The Studio 3T Field Guide to MongoDB Aggregation

$group: {

 _id : "$_id.storeLocation",

 counts : {

 $push : {

 "k" : {

 $cond : [

 {

 $eq : [

 "$_id.couponUsed",

 true

]

 },

 "CouponUsed",

 "CouponNotUsed"

]

 },

 "v" : "$count"

 }

 }

}

95 The Studio 3T Field Guide to MongoDB Aggregation

Grouping by storeLocation brings the two storeLocation documents per location together (one

for couponUsed true, one for couponUsed false), and the $push accumulator creates the counts

array. Notice the use of the $cond expression in the creation of the “k” field value, to convert

true/false bool values into strings CouponUsed and CouponNotUsed.

Here is a before-and-after 2: $group stage example for the New York storeLocation:

Before:

After:

So, $push has created the counts array of objects. Each object has a “key/value” pair.

96 The Studio 3T Field Guide to MongoDB Aggregation

The next step is to append these newly-labeled counts onto their location - in other words, we

want to get them out of the counts array and situate them as fields on each document, like this:

We haven't been using the labels "k" and "v" for our counts by accident. This is one of the

situations where $arrayToObject can be used. Recall that $arrayToObject can make objects

out of arrays, and that one of the options was to present it with an array of "k" key field names

and "v" value field values.

Using $arrayToObject with our counts array will produce an embedded document that

consists of these keys and values. The results of running a stage which was simply:

$set: {

 counts: { $arrayToObject: "$count" }

}

would look like this:

3: $replaceRoot

The next step would then be to merge these newly-created objects onto the root of each

document currently being processed. One way to do this would be to merge the new counts

field with the document itself. For that we can use $mergeObjects. But what document should

we merge with?

97 The Studio 3T Field Guide to MongoDB Aggregation

The $$ROOT system variable always contains the document currently being processed, as it

arrived in the stage, so to get our new document, we could use:

$mergeObjects: ["$$ROOT", "$counts"]

But we want the result of that to replace the entire current document. There's a stage for that -

$replaceRoot, which will take a value and completely replace the current document. That would

look something like this:

$replaceRoot: {

 "newRoot": $mergeObjects: ["$$ROOT", "$counts"]

If we use $replaceRoot and specify $mergeObjects to merge the documents created by using

$arrayToObject with $ROOT, we can achieve the desired effect.

Take a look at the next screenshot, which shows the input and output of the $replaceRoot

Stage 3, incorporating the $arrayToObject operator, that we’ve been assembling :

Notice the resultant document parts outlined in red in the Stage Output pane.

98 The Studio 3T Field Guide to MongoDB Aggregation

4: $unset

If we finish the pipeline off with a final $unset as stage 4 we can discard the counts array, which

is no longer needed, and we’ll end up with the desired output:

The complete pipeline for this example

99 The Studio 3T Field Guide to MongoDB Aggregation

{

 "$group" : {

 "_id" : {

 "storeLocation" : "$storeLocation",

 "couponUsed" : "$couponUsed"

 },

 "count" : {

 "$sum" : 1.0

 }

 }

},

{

 "$group" : {

 "_id" : "$_id.storeLocation",

 "counts" : {

 "$push" : {

 "k" : {

 "$cond" : [

 {

 "$eq" : [

 "$_id.couponUsed",

 true

]

 },

 "CouponUsed",

 "CouponNotUsed"

]

 },

 "v" : "$count"

 }

 }

 }

},

{

 "$replaceRoot" : {

 "newRoot" : {

 "$mergeObjects" : [

 "$$ROOT",

 {

 "$arrayToObject" : "$counts"

 }

]

 }

100 The Studio 3T Field Guide to MongoDB Aggregation

 }

},

{

 "$unset" : [

 "counts"

]

}

With just a bit of grouping and reshaping, we have reduced the 5000 documents in the sales

collection to just the 6 store location results needed to complete the coupon usage analysis.

101 The Studio 3T Field Guide to MongoDB Aggregation

Example: Using $group to Recombine $unwind-ed Documents

Recall the earlier example which used the sample_analytics Atlas sample database to

demonstrate $lookup to gather information from disparate collections within the

sample_analytics database. We left off with a resulting document for each customer that

contained embedded account_data and transactions sections – with the disadvantage of

duplicated customer documents, one for each account that a customer has.

The goal of this example was really to end up with the customer documents encompassing

everything, including the accounts and transactions for each customer, like:

Now we’ll use $group to re-combine the duplicated documents that $unwind produced, by

grouping on customer, using $push as the $group accumulator to append the $merged

documents account_data and transactions fields together from each of the duplicated customer

documents:

The $group stage:

"$group" : {

 "_id" : "$_id",

 "accounts" : {

 "$push" : {

 "$mergeObjects" : {

 "account_data" : "$account_data",

 "transactions" : "$transactions"

 }

102 The Studio 3T Field Guide to MongoDB Aggregation

 }

 }

}

Looking at the input to this $group stage, for a customer that has 3 accounts:

And the resulting output, with accounts expanded to show detail:

Notice that for the three input documents, $group has gathered them into one document, and

the $push accumulator in $group has appended the $merge of account_data and transactions

array, for each account. So now for each customer, all their accounts are nested, and for each

account, the account_data and the transactions are there.

103 The Studio 3T Field Guide to MongoDB Aggregation

Grouping data into $buckets

The $group stage is useful for grouping data based on some attributes. The $bucket stage

provides a different way to group data together: given a set of boundaries, incoming documents

are evaluated against those boundaries and grouped into the appropriate “bucket”.

To help illustrate the use of $bucket, we’ll turn to the Sample Weather Dataset which is one of

the sample datasets that are available to install along with your Atlas Free Tier Cluster. We

cover how to set this up in the section Creating Sample Data in the appendix of this book.

The Sample Weather dataset has a collection called data which is a set of 10000 documents.

Each document is a complete weather report for a specific time, at a specific location.

To find out exactly what time periods are included in the collection, we can utilize the Analyze

Schema feature in Studio 3T to get a quick summary of the data. In Studio 3T:

When the Analyze Schema tab opens, change the Analyze dropdown to All (matching) to

include all the data in the analysis:

https://docs.atlas.mongodb.com/sample-data/sample-weather/#std-label-sample-weather

104 The Studio 3T Field Guide to MongoDB Aggregation

Then select the green arrow to Run analysis. The results will be displayed in multiple panes.

One of the panes will list the fields in the collection. The timestamp data can be found in the ts

field, so select that field by clicking on it, which displays information about the ts field in the

other pane - the results of the analysis. There are 3 tabs displayed to show the results in

different ways - Charts, Statistics, and Comments. Select the Statistics tab, which displays

summary data about the ts field:

Notice the Earliest Entry and Latest Entry fields in the summary. From this quick analysis, we

now know that the entire data collection (10,000 documents) in the sample_weatherdata

database are targeting a 9-day period in March of 1984.

105 The Studio 3T Field Guide to MongoDB Aggregation

We could have queried the data to discover this, but it’s nice to be able to get a summary with a

few clicks in Studio 3T.

With this knowledge in hand, we’ll forge onward to look into how $bucket can be used for

grouping the weather data documents into buckets based on their timestamp. For this exercise,

we’re going to group data into buckets that are well-known to weather enthusiasts in the USA.

The National Weather Service uses a standard set of time periods when forecasting weather:

Today 6am - 6pm

This Morning 6am - noon

This Afternoon Noon - 6pm

This Evening 6pm - midnight

Overnight Midnight - 6am

Tonight 6pm - 6am

For this exercise, we’ll disregard for now the two periods with the overlapping times (Today, and

Tonight), which leaves 4 buckets: This Morning, This Afternoon, This Evening, and Overnight.

The task is to use $bucket to group the weather data observations into these four buckets so

that they can be used for weather forecasts.

To do so, we’ll use $bucket to group hourly by using the $hour Date Expression Operator to

return the hour portion from the ts (timestamp) date/time field :

The boundaries parameter of $bucket assigns the boundaries for each bucket. In this example

there are 4 buckets: 0-6, 6-12, 12-18, and 18-24. $bucket uses “inclusive lower boundary /

exclusive upper boundary” - so in this case, the first bucket will contain values starting from 0

and including everything up to 5; the second bucket will contain values from 6 up to 11, and so

on.

Each lower boundary value is used as the _id field for the 4 groups that $bucket creates::

106 The Studio 3T Field Guide to MongoDB Aggregation

Notice the content field that was created using $bucket’s output parameter. The output

parameter is optional with $bucket if output is not specified, then $bucket just emits the _id and

count of each bucket. If we ended the pipeline with just the $bucket stage, we’d have:

But in our case, we’re using $bucket’s output parameter to include fields in the output

documents. When using output, you must choose an accumulator expression, just as with

$group. Examine the $bucket stage for this example again:

107 The Studio 3T Field Guide to MongoDB Aggregation

We are using the $push accumulator to accumulate the documents for each of the 4 buckets

into arrays:

Here is the output parameter:

And the corresponding results:

108 The Studio 3T Field Guide to MongoDB Aggregation

1. The _id of each bucket comes from the lower boundary of that bucket

2. The content field in each of the 4 documents is an array of all documents meeting the

criteria for that bucket - 2,652 elements here

3. The day field is created using the $dayOfMonth Date Expression Operator

4. The hour field is created using the $hour Date Expression Operator

5. The id field of one of these content arrays is the id of the original document, before it

was put into the bucket

6. The field that I called forecast is simply the original data document, pushed here by

$$ROOT in the $push

The next step is to $unwind the content array in order to get back to the original 10,000

documents, still with their id field set to the bucket:

After $unwind, a $replaceRoot stage is used to restructure the documents:

109 The Studio 3T Field Guide to MongoDB Aggregation

In the $replaceRoot stage, several fields from the content object are promoted to the base level,

and the _id field of the incoming documents is saved as a new field called bucket. Here is a

before-and-after shot of this $replaceRoot stage:

Finally, we finish off the pipeline with a $set stage that uses $switch to assign the forecast

period to each of the four buckets:

In the results of this $set stage, notice the forecastPeriod field added to the documents:

Here is the pipeline in its entirety:

{"$bucket":

{"groupBy":{"$hour":"$ts"},

 "boundaries":[0.0,6.0,12.0,18.0,24.0],"default":"Unknown",

 "output":{"content":

110 The Studio 3T Field Guide to MongoDB Aggregation

 {"$push":

 {"day":{"$dayOfMonth":"$ts"},

 "hour":{"$hour":"$ts"},

 "id":"$_id",

 "forecast":"$$ROOT"}}}}},

{"$unwind":{"path":"$content"}},

{"$replaceRoot":

 {"newRoot":{"$mergeObjects":

 [{"_id":"$content.id",

 "day":"$content.day",

 "bucket":"$_id",

 "forecast":"$content.forecast"}]}}},

{"$set":{"forecastPeriod":

 {"$switch":{"branches":[

 {"case":{"$eq":["$bucket",0.0]},"then":"Overnight"},

 {"case":{"$eq":["$bucket",6.0]},"then":"This Morning"},

 {"case":{"$eq":["$bucket",12.0]},"then":"This Afternoon"},

 {"case":{"$eq":["$bucket",18.0]},"then":"This Evening"}],

 default":"Did not match"}}}}]

A Simpler Approach to Buckets Using $switch

As useful as the $bucket stage is, there is a simpler alternative, if the use case allows it. The

$switch Conditional Expression Operator can be used in many cases to perform a similar

function to $bucket. To demonstrate, we’ll do the same as the previous example to create

forecast periods, but using $switch to do so.

The entire pipeline using this method consists of only one $set stage, with $switch as an

expression in the set:

{

"forecastPeriod" : {

"$switch" : {

 "branches" : [

 {"case": {"$and":

 [{ "$gte": [{"$hour" : "$ts"}, 0]},

 { "$lt": [{"$hour" : "$ts"}, 6] }]},

 "then": "Overnight" },

 {"case": {"$and":

 [{ "$gte": [{"$hour" : "$ts"}, 6]},

 { "$lt": [{"$hour" : "$ts"}, 12] }]},

111 The Studio 3T Field Guide to MongoDB Aggregation

 "then": "This Morning" },

 {"case":

 {"$and": [{ "$gte": [{"$hour" : "$ts"}, 12]},

 { "$lt": [{"$hour" : "$ts"}, 18]}]},

 "then": "This Afternoon" },

 {"case":

 {"$and": [{ "$gte": [{"$hour" : "$ts"}, 18]},

 { "$lte": [{"$hour" : "$ts"}, 23]}]},

 "then": "This Evening" },

],

 default : "Did not match"

 }

 }

}

The $switch Conditional Expression Operator evaluates the boolean expressions in each case

statement, and performs the corresponding then expression when a case evaluates to true.

In this example, each case is structured to mimic the “inclusive lower boundary / exclusive

upper boundary” logic that we used in the $bucket example. This is accomplished by using

“greater than or equal to” for the lower bound, and “less than” for the upper bound (except for

the last case, which uses “less than or equal to” to get right up to midnight.

Multiple Aggregations With $facet

In our $bucket and $switch examples, where we formulated the forecast period for weather

data, based on the hour of day, there are 2 periods that we haven’t handled yet - Today and

Tonight. The National Weather Service classifies these this way:

Today 6am - 6pm

Tonight 6pm - 6am

Continuing with the simple example where we used $switch to create the forecast periods, the

following one-stage pipeline using $set uses this $switch expression to come up with Today and

Tonight:

{

todayTonight : {

 $switch : {

 branches : [

112 The Studio 3T Field Guide to MongoDB Aggregation

 { case: { $and:

 [{ $gte: [{ $hour : "$ts"}, 6]},

 { $lt: [{ $hour : "$ts"}, 18] }]},

 then: "Today" },

 { case: { $and:

 [{ $gte: [{ $hour : "$ts"}, 18]},

 { $lte: [{ $hour : "$ts"}, 23] }]},

 then: "Tonight" },

 { case: { $and:

 [{ $gte: [{ $hour : "$ts"}, 0]},

 { $lt: [{ $hour : "$ts"}, 6]}]},

 then: "Tonight" },

],

 default : "Did not match"

 }

 }

}

Notice the 2 cases that both evaluate to “Tonight”. This is done because “Tonight” is a period

that covers from 6pm to 6am. Some hours fall into the first set; others into the second set.

Nonetheless, both of these conditions meet the specification of “Tonight” (6pm - 6am), so the 2

cases are needed.

In order to combine the “forecastPeriods” aggregation, and the “todayTonight” aggregation, we

can use a $facet stage. The $facet stage allows you to run multiple aggregations to present

different views, or “facets” from the same data. On the output of $facet, the results from each

pipeline are presented as an array of documents, which means that the total size of the output

from $facet is subject to the 16 megabyte BSON Document Size limit. So in the example of

$facet that follows, we’ll limit the input to 100 documents, so that we don’t exceed this BSON

Document Size limit coming out of $facet.

Here is the entire stage specification for $facet, containing both pipelines that we covered earlier

- the $set with $switch to determine forecastPeriods, and the $set with $switch to determine

todayTonightPeriods:

{

 standardForecastPeriods: [

 { $set : { standardForecastPeriod: {

 $switch : {

 branches : [

 {

 case: {

113 The Studio 3T Field Guide to MongoDB Aggregation

 $and: [

 { $gte: [{ $hour : "$ts"}, 0] },

 { $lt: [{ $hour : "$ts"}, 6] }

]

 },

 then: "Overnight" },

 {

 case: {

 $and: [

 { $gte: [{ $hour : "$ts"}, 6] },

 { $lt: [{ $hour : "$ts"}, 12] }

]

 },

 then: "This Morning" },

 {

 case: {

 $and: [

 { $gte: [{ $hour : "$ts"}, 12] },

 { $lt: [{ $hour : "$ts"}, 18] }

]

 },

 then: "This Afternoon" },

 {

 case: {

 $and: [

 { $gte: [{ $hour : "$ts"}, 18] },

 { $lte: [{ $hour : "$ts"}, 23] }

]

 },

 then: "This Evening" },

],

 default : "Did not match"

 }

 }}}],

 todayTonightPeriods: [

 { $set : { todayTonight: {

 $switch : {

 branches : [

 {

 case: {

 $and: [

 { $gte: [{ $hour : "$ts"}, 6]},

 { $lt: [{ $hour : "$ts"}, 18] }

114 The Studio 3T Field Guide to MongoDB Aggregation

]

 }, then: "Today" },

 {

 "case": {

 "$and": [

 { "$gte": [{"$hour" : "$ts"}, 18]},

 { "$lte": [{"$hour" : "$ts"}, 23] }

]

 },"then": "Tonight" },

 {

 "case": {

 "$and": [

 { "$gte": [{"$hour" : "$ts"}, 0]},

 { "$lt": [{"$hour" : "$ts"}, 6]}

]

 },"then": "Tonight" },

],

 default : "Did not match"

 }

 }}}],

}

This $facet stage is the second stage in the pipeline, following the first stage, a $limit stage:

115 The Studio 3T Field Guide to MongoDB Aggregation

Notice the 2 array fields, which are the results of the 2 $facet sub-pipelines. What if we followed

the $facet stage with a couple of $unwind stages - one for each result array:

Notice the effect here - each result document consists of two documents - one from each of the

original array results from $facet. In fact, each set of two documents corresponds to the same

_id from the original data, so each result document is actually each $facet result for that _id, for

example, the first one here:

{

 "standardForecastPeriods" : {

 "_id" : "5553a998e4b02cf7151190b8",

 "st" : "x+47600-047900",

 "ts" : "1984-03-05T13:00:00.000+0000",

...
 "precipitationEstimatedObservation" : {

 "discrepancy" : "2",

 "estimatedWaterDepth" : 999

 },

 "standardForecastPeriod" : "This Afternoon"

 },

116 The Studio 3T Field Guide to MongoDB Aggregation

 "todayTonightPeriods" : {

 "_id" : "5553a998e4b02cf7151190b8",

 "st" : "x+47600-047900",

 "ts" : "1984-03-05T13:00:00.000+0000",

...
 "precipitationEstimatedObservation" : {

 "discrepancy" : "2",

 "estimatedWaterDepth" : 999

 },

 "todayTonight" : "Today"

 }

}

Using $facet is a powerful technique to present the same data in different ways.

Custom Accumulator Operators with $accumulator

With $group, you have a variety of accumulators at your disposal. But sometimes there’s a need

to do something with a group that’s not available in the standard set of accumulator

expressions. For this situation there’s $accumulator, which allows you to create your own user-

defined accumulator function.

One thing that I learned when trying this out on the Atlas Free Tier Cluster: $accumulator is not

permitted on Free or Shared tiers, as they are implemented using server-side JavaScript. They

are only permitted on the Dedicated Atlas tiers. An error is raised during the execution of the

pipeline:

{

 "ok" : 0.0,

 "errmsg" : "$accumulator not allowed in this atlas tier",

 "code" : 8000.0,

 "codeName" : "AtlasError"

}

To carry out the following example, I had to use a local MongoDB instance, with a local copy of

the Atlas sample databases. We covered setting this up earlier in the Creating Sample Data

section at the beginning of this book.

https://docs.mongodb.com/manual/reference/operator/aggregation/group/#accumulator-operator
https://docs.google.com/document/d/1BTipxGULz0kkfUNJgFK0hbOqie-O_Wxpm9Ymb3Om_9w/edit#heading=h.x3mlhptwxbdz

117 The Studio 3T Field Guide to MongoDB Aggregation

Example: Creating a String Concatenation Custom $Accumulator Operator

To demonstrate creating a user-defined accumulator with $accumulator, we’ll use the Sample

Training database, which is one of the sample databases available for the Atlas Free Tier

Cluster. If you need a refresher on how to load the sample databases, please see the “Creating

Sample Data” section at the beginning of this book.

Within the Sample Training database are a variety of collections used in various MongoDB

training exercises. For this example, we’re going to use the zips collection, which contains ZIP

code information for cities in the USA.

A document from the zip collection looks like this:

In this sample, the ZIP code is in the field zip and is 35083, the state is “AL” (Alabama), and the

city is “HOLLY POND”.

Suppose the goal is to group the zips collection by state, with the cities in each state

concatenated together like this:

To start off, the $group stage could do this:

This would almost accomplish the desired output:

Input to this $group stage:

118 The Studio 3T Field Guide to MongoDB Aggregation

Output from this $group stage:

Notice that $group has grouped 29,470 documents into the 51 groups for the US states. The

$push accumulator has collected the cities for each state into an array, because that’s the job

that $push does.

But the desired output is not an array, but a long string of concatenated city names:

119 The Studio 3T Field Guide to MongoDB Aggregation

It would be great if there were a version of the $concat String Expression Operator that also

functions as an accumulator for $group. There is not, but that’s what we’ll create now, using

$accumulator to create a user-defined accumulator function to do the job.

The MongoDB documentation for $accumulator looks somewhat daunting, but the basic idea is

that an $accumulator can maintain its state as documents flow through. So you can add to that

state during the processing of a group, then spit out the final result at the end of processing the

group, and then start over with a clean state to work on the next group.

Let’s first look at the user-defined accumulator that gets the desired output for this example, and

then we’ll cover the parameters to $accumulator for this example in detail:

The $group stage with $accumulator:

Input to this $group stage:

https://docs.mongodb.com/manual/reference/operator/aggregation/accumulator/#-accumulator--aggregation-

120 The Studio 3T Field Guide to MongoDB Aggregation

Output from this $group stage:

The parameters to $accumulator:

init init: function() { return [] } This initializes the state at the start of group
processing. In this case, we are starting the
state off as an empty array

initArgs <optional> Optional args to the init function

121 The Studio 3T Field Guide to MongoDB Aggregation

accumulate function(cities, city)
{return cities.concat(city)}

This function does the accumulating - the first
arg “cities” is what we’re calling our
accumulator state, and the second arg is what
we’re calling the accumulateArgs

accumulateArgs ["$city"] This provides the value for arg 2 of the
accumulate function

merge function(cities1, cities2)
{return cities1.concat(cities2)}

The merge function is best described in the
MongoDB docs

finalize function(cities)
{return cities.join()}

This function returns final result of the
accumulation

lang js The language used for $accumulator

In the accumulate function, we’re using JavaScript concat to append an element to an array.

And then in the finalize function, we’re using JavaScript join to return a new string created by

concatenating all the elements in the cities array, with the default delimiter value (a comma) in

between each.

Using $accumulator, we were able to create the desired output.

https://docs.mongodb.com/manual/reference/operator/aggregation/accumulator/#merge-two-states-with--merge

122 The Studio 3T Field Guide to MongoDB Aggregation

5: Distributing Data

Typically, the output from an aggregation pipeline is available as a stream of results that an

application can iterate through. For example, a tool like Studio 3T can capture those results and

display them to the user in formatted tables.

However, you may wish to save the results in another collection or use them to update existing

data. There are two stages, $out and $merge which allow you to do just that. $out writes results

to another collection while $merge uses the results to update another collection.

Both of these stages need to be the last stage in a pipeline. With Studio 3T you can use $out

and $merge and still see results in the Aggregation Editor (as well as having the collections

created). This saves time when developing an aggregation as you don't have to open the

created collection.

The $out Stage

The $out stage is the simplest stage operator. It takes the pipeline's output and writes it to a

new collection. If that collection already exists, it completely replaces it.

It is useful to know that when $out does replace an existing collection it does so in a way which

maintains the original collection in the database until the new collection is complete and that

$out copies over the indexes from the original collection to the replacement automatically. That

gives an atomic3 switch between $out created collections when they are being updated.

As an example of using $out, let’s take an example that we covered in the previous chapter -

“Example: Sales Using Coupons”, and instead of the cursor result that’s normally produced,

we’ll send the results into a new collection.

In that example, the output produced is a summary of coupon usage for all of the retail stores,

by location:

3 An atomic operation on a database is a single action which either completes successfully or has no

effect. Atomic operations can help to ensure the integrity of the database.

123 The Studio 3T Field Guide to MongoDB Aggregation

This output is what’s saved into the collection using $out. To do this, we need to simply add on

an “$out” stage as the final stage of the pipeline. To demonstrate this, we’ll save the output into

a new collection “coupon_usage”, in the same database (sample_supplies):

Notice that the default case of $out takes a string as a parameter, not a document surrounded

by curly braces.

The result of running this aggregation pipeline in Studio 3T will be the same as before we added

the $out stage, but with the additional outcome of creating (or replacing) a collection called

“coupon_usage”.

124 The Studio 3T Field Guide to MongoDB Aggregation

Note: the action of showing the results even when $out is used, is a feature unique to Studio 3T.

Running this aggregation in the mongo command shell, for instance, would produce no visible

output as it creates the collection specified by $out.

Refreshing the sample_supplies collection in the Connection Tree shows that the

“coupon_usage” collection has been created:

To create the collection in a database different from the current one, $out takes a document

parameter, specifying the target database and collection. For example, suppose that we want to

save the results in the sample_training Atlas sample database:

125 The Studio 3T Field Guide to MongoDB Aggregation

The results of running the aggregation are the same, with the output saved into the

“coupon_usage” collection in the sample_training database:

There is a variant of $out that can be used only on MongoDB Atlas Data Federation databases,

to output aggregation results to Amazon S3 buckets in a variety of formats, such as CSV,

BSON, parquet, and more. These federated database instance stores can then be used as

query data sources. MongoDB Atlas Data Federation is covered in detail here.

$out is a simple way of copying data to a new collection, but it lacks the ability to update existing

data. For that, we'll want $merge.

https://www.mongodb.com/docs/atlas/data-federation/overview/?_ga=2.42291941.1374139596.1669719506-1680640889.1668138062#atlas-data-federation-overview

126 The Studio 3T Field Guide to MongoDB Aggregation

The $merge Stage

In this next example, we’ll explore using the $merge stage to process updates to our collection

data. We’ll use the sample_analytics database that you created earlier in an Atlas Free Tier

instance, or in your local MongoDB instance.

In a relational database such as MySQL, new data is inserted into tables using the INSERT

statement, and existing data that needs to be updated in tables is updated using the UPDATE

statement. In recent SQL standards, the MERGE statement has emerged to handle both insert

and update at the same time, depending on certain conditions. The SQL MERGE statement

handles what is called an upsert - update/insert.

The MongoDB Aggregation Framework provides a similar function in the $merge stage. As an

example of using $merge, we’ll create an upsert pipeline to create a daily sales totals collection,

based on the daily orders in the sales collection in the Atlas Cluster sample database

sample_supplies. We’ll calculate the totals for each day and then store the results in a new

collection - the daily_sales_totals collection.

In this example exercise, let’s suppose that daily sales totals are inserted into the

daily_sales_totals collection at the end of each day. But we also need to handle “late-arriving”

sales data, perhaps from store branches that were unable to send the complete set of sales

orders for a day. Such late-arriving data can be included in the sales totals, even if the totals

were already previously computed, by using the replace action of the $merge stage to replace

that day’s total in the daily_sales_totals collection.

To calculate daily sales in order to store them, we’ll borrow a technique that was covered in a

previous example “Example: Calculating Order Totals”, where a $project stage was used with a

$map expression to loop over all items in a sale, to calculate the order total. In this example,

we’ll also formulate a id based on the date, in the format YYYY-MM-DD, and use that to $group

on, using $sum to create the order totals and total orders, per day:

Finally, we’ll finish off the pipeline with a $merge stage, to save the results to the

daily_sales_totals collection.

First, the $project stage:

https://docs.google.com/document/d/1BTipxGULz0kkfUNJgFK0hbOqie-O_Wxpm9Ymb3Om_9w/edit#heading=h.wxxkky34y047

127 The Studio 3T Field Guide to MongoDB Aggregation

{

 theDate : {

 $dateToString : {

 format : "%Y-%m-%d",

 date : "$saleDate",

 timezone : "America/New_York"

 }

 },

 storeLocation : 1,

 orderTotal : {

 $sum : {

 $map : {

 input : { $range : [0, { $size : "$items" }

]

 },

 in : {

 $multiply : [

 { $arrayElemAt : ["$items.quantity", "$$this"] },

 { $arrayElemAt : ["$items.price", "$$this"] }]

 }

 }

128 The Studio 3T Field Guide to MongoDB Aggregation

 }

 }

}

Here, we are defining theDate field as a string with the desired date format, and then

storeLocation (which is unused), followed by the totalling piece using $map, which is explained

in great detail in the section “Calculating Order Totals”.

Second stage is a $group:

{

 _id : "$theDate",

 order_daily_total : {

 $sum : "$orderTotal"

 },

 order_daily_count : {

 $sum : 1

 }

}

129 The Studio 3T Field Guide to MongoDB Aggregation

In this stage, we simply group by the new theDate field that we created in the previous $project

stage, and aggregate using $sum accumulator to create order_daily_total and

order_daily_count.

The final stage - the $merge:

{

 into : "daily_sales_totals",

 on: "_id",

 whenMatched : "replace",

 whenNotMatched : "insert"

}

The $merge stage names the output collection with the into parameter, which is created if it

doesn’t already exist. The on parameter specifies the field to match on in the output collection.

We explicitly specify “_id” here although that is the default, so it could have been omitted.

The whenMatched and whenNotMatched fields then define the actions to take when a match

occurs, and when no match occurs. In this example, if the document already exists in the output

collection, it gets updated (using the "replace" action); otherwise it’s inserted (using the "insert"

action). In other words, the $merge stage is implementing an upsert.

These are not the only actions that can be taken. On matching, you can also:

● "keepExisting", to retain the existing document.

● "merge" (the default action) which does a $mergeObjects between the existing and new

document.

● "fail" to bring the aggregation to an end.

● Or you can include an aggregation pipeline to update the document in the collection.

This is a limited pipeline in that it can only have $addFields, $set, $project, $unset,

130 The Studio 3T Field Guide to MongoDB Aggregation

$replaceRoot and $replaceWith stages. The new document is accessible through the

$$new variable.

When not matched, the actions are more limited. The "insert" action is the default,

"discard" will drop the new document and "fail" will bring the aggregation to an early end.

To demonstrate how our new $merge stage works in practice, we’ll take the following steps:

1. We’ll run the aggregation pipeline just described, against the sales collection in the

sample_supplies sample database. This will create the new daily_sales_totals collection

in the same database.

2. Then we’ll execute some scripts to simulate updates in the sales collection - for this

example we’ll do 3 things:

1. Insert a new order for a day that already had orders (2016-10-10)

2. Insert a new order for a day that previously had no orders (2018-01-02)

3. Update a field in an existing order on an existing day (2017-04-18). The field to

be updated for the order will be storeLocation.

3. After performing these updates, we’ll run the aggregation pipeline to perform the $merge

again. As a result, in the daily_sales_totals, we should observe:

1. For 2016-10-10, the order daily total and the count of orders for the day should

increase

2. A new document should appear for 2018-01-02

3. For 2017-04-18, the totals and count of orders should remain the same, as the

field updated doesn't affect order items or amounts.

131 The Studio 3T Field Guide to MongoDB Aggregation

Step 1: Running the pipeline

Run the aggregation pipeline to create the new daily_sales_totals collection. Here’s an excerpt

of what the output looks like:

132 The Studio 3T Field Guide to MongoDB Aggregation

Step 2: Perform some updates

First we insert a new order for a day that already had orders (2016-10-10). Run this script

command in IntelliShell.

db.sales.insertOne({

 saleDate : ISODate("2016-10-10T18:42:02.560+0000"),

 items : [

 {

 name : "backpack",

 tags : [

 "school",

 "travel",

 "kids"

],

 price : 80.61,

 quantity : 1

 },

 {

 name : "notepad",

 tags : [

 "office",

 "writing",

 "school"

],

 price : 3.21,

 quantity : 1

 }

],

 storeLocation : "Chicago",

 customer : {

 gender : "M",

 age : 16,

 email : "jeb@yolo.com",

 satisfaction : 5

 },

 couponUsed : false,

 purchaseMethod : "Online"

})

133 The Studio 3T Field Guide to MongoDB Aggregation

You should see something like this in the IntelliShell, with a different insertedId value.

134 The Studio 3T Field Guide to MongoDB Aggregation

Next, we insert a new order for a day that previously had no orders (2018-01-02)

db.sales.insertOne({

 saleDate : ISODate("2018-01-02T08:00:00.100+0000"),

 items : [

 {

 name : "binder",

 tags : ["school", "general", "organization"],

 price : 27.16,

 quantity : 9

 },

 {

 name : "laptop",

 tags : ["electronics", "school", "office"],

 price : 1472.23,

 quantity : 4

 },

 {

 name : "envelopes",

 tags : ["stationary", "office", "general"],

 price : 11.53,

 quantity : 5

 }

],

 storeLocation : "London",

 customer : {

 gender : "M",

 age : 35,

 email : "ugevu@otuczo.mx",

 "satisfaction" : 3

 },

 couponUsed : false,

 purchaseMethod : "Online"

})

Again, you should see something like the screenshot below, but with a different insertedId.

135 The Studio 3T Field Guide to MongoDB Aggregation

136 The Studio 3T Field Guide to MongoDB Aggregation

Finally, we will update a field in an existing order on an existing day (2017-04-18). We’ll change

the storeLocation field for this order from “Denver” to “Boulder”.

db.sales.updateOne(

 { _id: ObjectId("5bd761dcae323e45a93cd10e") },

 { $set: { "storeLocation": "Boulder" } })

137 The Studio 3T Field Guide to MongoDB Aggregation

Step 3: Run the pipeline again

Now we run the aggregation pipeline with the $merge stage again. Then we can check the days

that had updates in the daily_sales_totals collection.

First, let's look at 2016-10-10.

Before our changes, it looked like this:

After our change and re-running the $merge aggregation:

138 The Studio 3T Field Guide to MongoDB Aggregation

Now, let's look at 2018-01-02. Before running our changes:

There's no document for that date.

 After running the update and the $merge aggregation:

And demonstrating that the aggregation also acts as a filter for irrelevant changes, the change

of storeLocation on the 2017-04-18 creates no changes in our $merge collection. That's

because storeLocation is not used in the aggregating of the daily_total_sales collection.

The aggregation with $merge can be run multiple times with no adverse effect - it will simply re-

compute and update the totals for each day, and insert new days as needed, if orders are found

for days that didn’t have any during previous runs.

139 The Studio 3T Field Guide to MongoDB Aggregation

$merge on the same collection

140 The Studio 3T Field Guide to MongoDB Aggregation

Note that careful handling is required when $merge outputs to the same collection that’s being

aggregated. Care must be taken to avoid an infinite loop caused by $merge detecting what it

thinks are new documents due to the physical storage location of documents changing during

the $merge. See Output to the Same Collection that is Being Aggregated for details.

Exporting with Studio 3T

The $out and $merge stages are native to the aggregation pipeline and allow you to write your

aggregation results to other MongoDB collections. They are, though, not the only way to get

your data distributed if you have Studio 3T.

Studio 3T can take the results from any query or aggregation and export them to a variety of file

formats, such as comma-separated values (CSV), SQL, JSON and BSON, or to another

collection.

Using the Studio 3T Export with an output type of “to another collection” is similar to using $out

or $merge in an aggregation. Studio 3T Export provides additional options in how the

documents are exported.

To demonstrate, suppose that we’d like to export the results of the aggregation that we created

in “Example: Sales Using Coupons”. The output produced in that aggregation looks like this:

{

 "_id" : "Austin",

 "CouponUsed" : 58.0,

 "CouponNotUsed" : 618.0

}

{

 "_id" : "Seattle",

 "CouponNotUsed" : 1031.0,

 "CouponUsed" : 103.0

}

{

 "_id" : "San Diego",

 "CouponUsed" : 27.0,

 "CouponNotUsed" : 319.0

}

There are a few different ways to get to the Export function within Studio 3T - one way is the

Export button, located on the Global toolbar:

https://www.mongodb.com/docs/manual/reference/operator/aggregation/merge/#output-to-the-same-collection-that-is-being-aggregated

141 The Studio 3T Field Guide to MongoDB Aggregation

When clicked, the Export dialog appears, with options to select the source of the exported data:

For this example, we’ll be using an Aggregation query as the source of data to be exported. On

the next screen, choose the collection to query:

142 The Studio 3T Field Guide to MongoDB Aggregation

For this example, the aggregation is run against the sales collection in the sample_supplies

Atlas sample database, so choose that.

On the next screen, we select the destination of the export - there are file destinations like

JSON, CSV, and SQL script; there’s also an option to export to another collection:

143 The Studio 3T Field Guide to MongoDB Aggregation

Since we’ll be exporting the aggregation query results to another collection, select that option

and then click on the Configure button to configure specific options for the export:

144 The Studio 3T Field Guide to MongoDB Aggregation

Configure takes us into the process of defining an export unit in a Studio 3T Export task. Tasks

are a great convenience in Studio 3T - you can define many common actions in Tasks, and then

save the Tasks to re-run later as required.

In this Export, we are configuring one export unit, but a Studio 3T export may consist of many

export units, which are all grouped under a single task.

 In the screenshot above, notice the annotations (1, 2, and 3):

1. We selected Open Query and located the aggregation query to be used for this export,

from a file on the computer. This is the aggregation query that was saved during the

development of the “Example: Sales Using Coupons” example.

2. The “Export target” target database and collection are set here.

3. “Export mode” is set with this dropdown. This determines how exported rows are

handled - for instance, how to handle exported documents having the same _id as

existing documents in the target collection

Once the export units are configured, and the task is saved, this Studio 3T export can be run or

re-run, or even scheduled, at any time.

For additional examples and in-depth reading on Studio 3T Export and Tasks, see the Studio 3T

documentation and knowledge base articles, like these:

145 The Studio 3T Field Guide to MongoDB Aggregation

Export Wizard

Doing Multiple MongoDB Exports At Once With Studio 3T

Exporting MongoDB as BSON: Folders or Archive?

Incremental Execution for Export and Migration

Wrapping Up

We covered many features of the MongoDB Aggregation Framework and Studio 3T. We looked

at a good cross-section of aggregation pipeline stages and operators, illustrated using examples

and sample data for Atlas Free Tier Cluster, as well as locally-managed MongoDB instances.

We used the Aggregation Editor to develop and debug our aggregation pipelines, and other

features of Studio 3T to manage our MongoDB connections and development environment.

I hope that the information and examples were helpful in enhancing your understanding of the

MongoDB Aggregation Framework.

Additional Resources

Here are some additional resources to reinforce your learning and build your skill in MongoDB

querying:

MongoDB 101: Getting Started

MongoDB 201: Querying MongoDB Data

MongoDB 301: Aggregation

Knowledge Base Articles: MongoDB Aggregation Framework

Appendix

Setting up an Atlas Free Tier Cluster

You'll need a MongoDB instance for learning and practice, and the easiest way to get started

with one is to set up an Atlas Free Tier MongoDB Cluster. As the name implies, there are no

charges incurred for running a Free Tier Cluster. Using Atlas frees you from having to run

MongoDB locally; although running locally is a good option for those times when an internet

connection is not available.

https://studio3t.com/knowledge-base/articles/mongodb-export-csv-json-sql-bson/
https://studio3t.com/whats-new/doing-multiple-mongodb-exports-at-once-with-studio-3t-studio3t_ama/
https://studio3t.com/whats-new/exporting-mongodb-as-bson-folders-or-archive-studio3t_ama/
https://studio3t.com/knowledge-base/articles/incremental-execution-for-export-and-migration/
https://studio3t.com/academy/courses/mongodb-101-getting-started/
https://studio3t.com/academy/courses/mongodb-201-querying-mongodb-data/
https://studio3t.com/academy/courses/mongodb-301-aggregation/
https://studio3t.com/knowledge-base/categories/aggregation/

146 The Studio 3T Field Guide to MongoDB Aggregation

There are a number of restrictions on the Atlas Free Tier (some of which we'll touch on later in

the book). If you are able to, it's worth running both an Atlas Free Tier Cluster and a local

MongoDB.

The best way to get started with an Atlas Free Tier Cluster is to follow the steps in the MongoDB

documentation: Get Started With Atlas.

Once your Atlas cluster is up, you can quickly connect to it with Studio 3T by following the steps

in the How to Connect to MongoDB Atlas tutorial.

Loading Sample Data

As part of the initial setup of an Atlas Free Tier cluster, the Atlas MongoDB onboarding will take

a user through the process of loading a sample dataset. If you omit to do that or already have a

cluster in place, follow the Load Sample Data guide from the MongoDB documentation. The

quick version is select your database, click the … button for extra menu items on the cluster,

select Load Sample Dataset.

Setting up a local MongoDB instance

You can get set up with a local MongoDB instance by following the steps in Install MongoDB

Community Edition.

Loading Sample Data

You can find the sample data used in this book, and instructions on how to install it in the

MongoDB developer documentation. If you are using Studio 3T, download the file using curl or

wget:

wget https://atlas-education.s3.amazonaws.com/sampledata.archive

Or

curl -O https://atlas-education.s3.amazonaws.com/sampledata.archive

Once the file is downloaded, connect to your local database in Studio 3T. Select the database

connection in the sidebar, then click the Import button in the toolbar. You will be prompted to

select which type of import you want to do. Select BSON - mongodump archive.

https://docs.atlas.mongodb.com/getting-started/#get-started-with-atlas
https://docs.atlas.mongodb.com/getting-started/#get-started-with-atlas
https://studio3t.com/knowledge-base/articles/connect-to-mongodb-atlas/
https://www.mongodb.com/docs/atlas/sample-data/#load-sample-data-into-your-atlas-cluster
https://docs.mongodb.com/manual/administration/install-community/#install-mongodb-community-edition
https://docs.mongodb.com/manual/administration/install-community/#install-mongodb-community-edition
https://www.mongodb.com/developer/products/atlas/atlas-sample-datasets/#sql-atlas-sample-data-local-installation

147 The Studio 3T Field Guide to MongoDB Aggregation

Then click the Configure button. You will now be presented with the import configuration

window.

Click the Select file button and you'll see the file selection dialog. Before you try and select the

file, go to the file type selector and change it from GZipped Archive File (*.agz) to Archive File

(*.archive). You can now navigate to where you downloaded the sample data previously and

select the sampledata.archive file. Click Open to confirm and return to the configuration window.

You do not need to set anything else on this page, simply click Run to begin the import. You

can watch it progress in the operations window.

148 The Studio 3T Field Guide to MongoDB Aggregation

	Table of Contents
	Introduction
	Aggregation - where it fits

	Getting Prepared
	Getting Started with Studio 3T

	The MongoDB Aggregation Framework
	The Production Line
	Stages - The Filtering Factories
	Stages - The Repurposing Machines
	Stages - The Summarizing Plants
	Stages - The Appenders and Blenders
	Stages - The Distribution Chain

	Building A Pipeline
	Starting with $match
	Under the hood

	More Stages
	$project
	$unwind
	$group
	$sort
	$sortByCount
	Expressions
	Literal Expressions
	Field Path Expressions
	Expression Operators

	One more thing: Variables
	System Variables
	User Variables

	1: Filtering Data with $match
	$match
	$expr
	Searching for data in arrays
	Matching with Regular Expressions

	2: Repurposing and reshaping data
	The $project stage
	Including Fields
	Excluding Fields
	Adding new fields with $project
	Calculating order totals
	Calculating with Array Elements
	Stepping through the array
	Getting a Total

	Converting Normalized Data to Embedded Data
	Enriching the Comments Collection using $lookup
	Using Studio 3T to Check References
	Creating a $lookup stage

	Using $set instead of $project
	Regular Expressions and the $regex operators
	Example: Using $regex operators To Extract Twitter Hashtags

	Reducing Arrays with $filter
	$filter and Regular Expressions

	Creating fields dynamically
	Using $replaceRoot
	Using $lookup To Consolidate Customer Information
	$mergeObjects
	Adding Documents with $unionWith

	4: Grouping and Summarizing
	Working with $group and _id
	Accumulation in Aggregation
	Aggregating Everything
	Accumulators and $group
	Accumulating Arrays
	Example: Sales Using Coupons
	1: $group
	2: $group
	3: $replaceRoot
	4: $unset

	Example: Using $group to Recombine $unwind-ed Documents
	Grouping data into $buckets
	A Simpler Approach to Buckets Using $switch
	Multiple Aggregations With $facet
	Custom Accumulator Operators with $accumulator
	Example: Creating a String Concatenation Custom $Accumulator Operator

	5: Distributing Data
	The $out Stage
	The $merge Stage
	Step 1: Running the pipeline
	Step 2: Perform some updates
	Step 3: Run the pipeline again

	$merge on the same collection
	Exporting with Studio 3T

	Wrapping Up
	Additional Resources

	Appendix
	Setting up an Atlas Free Tier Cluster
	Loading Sample Data

	Setting up a local MongoDB instance
	Loading Sample Data

